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Introducing Global Optimization Toolbox Functions
(p. 1)

Introduces the algorithms and features.

Write Files for Optimization Functions
(p. 1)

Explains how to write files that compute the
functions you want to optimize.
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Introducing Global Optimization
Toolbox Functions

• “Global Optimization Toolbox Product Description” on page 1-2
• “Solution Quality” on page 1-3
• “Comparison of Five Solvers” on page 1-4
• “What Is Global Optimization?” on page 1-12
• “Optimization Workflow” on page 1-16
• “Choosing a Solver” on page 1-17
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Global Optimization Toolbox Product Description
Solve multiple maxima, multiple minima, and nonsmooth optimization problems

Global Optimization Toolbox provides methods that search for global solutions to
problems that contain multiple maxima or minima. It includes global search, multistart,
pattern search, genetic algorithm, and simulated annealing solvers. You can use
these solvers to solve optimization problems where the objective or constraint function
is continuous, discontinuous, stochastic, does not possess derivatives, or includes
simulations or black-box functions with undefined values for some parameter settings.

Genetic algorithm and pattern search solvers support algorithmic customization. You
can create a custom genetic algorithm variant by modifying initial population and fitness
scaling options or by defining parent selection, crossover, and mutation functions. You
can customize pattern search by defining polling, searching, and other functions.

Key Features

• Interactive tools for defining and solving optimization problems and monitoring
solution progress

• Global search and multistart solvers for finding single or multiple global optima
• Genetic algorithm solver that supports linear, nonlinear, and bound constraints
• Multiobjective genetic algorithm with Pareto-front identification, including linear and

bound constraints
• Pattern search solver that supports linear, nonlinear, and bound constraints
• Simulated annealing tools that implement a random search method, with options for

defining annealing process, temperature schedule, and acceptance criteria
• Parallel computing support in multistart, genetic algorithm, and pattern search solver
• Custom data type support in genetic algorithm, multiobjective genetic algorithm, and

simulated annealing solvers
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Solution Quality

Global Optimization Toolbox solvers repeatedly attempt to locate a global solution.
However, no solver employs an algorithm that can certify a solution as global.

You can extend the capabilities of Global Optimization Toolbox functions by writing your
own files, by using them in combination with other toolboxes, or with the MATLAB® or
Simulink® environments.
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Comparison of Five Solvers

In this section...

“Function to Optimize” on page 1-4
“Five Solution Methods” on page 1-5
“Compare Syntax and Solutions” on page 1-10

Function to Optimize

This example shows how to minimize Rastrigin’s function with five solvers. Each solver
has its own characteristics. The characteristics lead to different solutions and run times.
The results, examined in “Compare Syntax and Solutions” on page 1-10, can help you
choose an appropriate solver for your own problems.

Rastrigin’s function has many local minima, with a global minimum at (0,0):

Ras( ) cos cos .x x x x x= + + - +( )20 10 2 21
2

2
2

1 2p p

Usually you don't know the location of the global minimum of your objective function. To
show how the solvers look for a global solution, this example starts all the solvers around
the point [20,30], which is far from the global minimum.

The rastriginsfcn.m file implements Rastrigin’s function. This file comes with Global
Optimization Toolbox software. This example employs a scaled version of Rastrigin’s
function with larger basins of attraction. For information, see “Basins of Attraction” on
page 1-13.

rf2 = @(x)rastriginsfcn(x/10);
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This example minimizes rf2 using the default settings of fminunc (an Optimization
Toolbox™ solver), patternsearch, and GlobalSearch. It also uses ga and
particleswarm with a nondefault setting, to obtain an initial population around the
point [20,30].

Five Solution Methods

• “fminunc” on page 1-6
• “patternsearch” on page 1-6
• “ga” on page 1-7
• “particleswarm” on page 1-8
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• “GlobalSearch” on page 1-9

fminunc

To solve the optimization problem using the fminunc Optimization Toolbox solver, enter:

rf2 = @(x)rastriginsfcn(x/10); % objective

x0 = [20,30]; % start point away from the minimum

[xf,ff,flf,of] = fminunc(rf2,x0)

fminunc returns

Local minimum found.

Optimization completed because the size of the gradient is 

less than the default value of the function tolerance.

xf =

   19.8991   29.8486

ff =

   12.9344

flf =

     1

of = 

       iterations: 3

        funcCount: 15

         stepsize: 1.7776e-06

     lssteplength: 1

    firstorderopt: 5.9907e-09

        algorithm: 'quasi-newton'

          message: 'Local minimum found.…'

• xf is the minimizing point.
• ff is the value of the objective, rf2, at xf.
• flf is the exit flag. An exit flag of 1 indicates xf is a local minimum.
• of is the output structure, which describes the fminunc calculations leading to the

solution.

patternsearch

To solve the optimization problem using the patternsearch Global Optimization
Toolbox solver, enter:
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rf2 = @(x)rastriginsfcn(x/10); % objective

x0 = [20,30]; % start point away from the minimum

[xp,fp,flp,op] = patternsearch(rf2,x0)

patternsearch returns

Optimization terminated: mesh size less than options.TolMesh.

xp =

   19.8991   -9.9496

fp =

    4.9748

flp =

     1

op = 

        function: @(x)rastriginsfcn(x/10)

     problemtype: 'unconstrained'

      pollmethod: 'gpspositivebasis2n'

   maxconstraint: []

    searchmethod: []

      iterations: 48

       funccount: 174

        meshsize: 9.5367e-07

        rngstate: [1x1 struct]

         message: 'Optimization terminated: mesh size less than options.TolMesh.'

• xp is the minimizing point.
• fp is the value of the objective, rf2, at xp.
• flp is the exit flag. An exit flag of 1 indicates xp is a local minimum.
• op is the output structure, which describes the patternsearch calculations leading

to the solution.

ga

To solve the optimization problem using the ga Global Optimization Toolbox solver,
enter:

rng default % for reproducibility

rf2 = @(x)rastriginsfcn(x/10); % objective

x0 = [20,30]; % start point away from the minimum

initpop = 10*randn(20,2) + repmat([10 30],20,1);

opts = gaoptimset('InitialPopulation',initpop);

[xga,fga,flga,oga] = ga(rf2,2,[],[],[],[],[],[],[],opts)
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initpop is a 20-by-2 matrix. Each row of initpop has mean [10,30], and each
element is normally distributed with standard deviation 10. The rows of initpop form
an initial population matrix for the ga solver.

opts is an optimization structure setting initpop as the initial population.

The final line calls ga, using the optimization structure.

ga uses random numbers, and produces a random result. In this case ga returns:

Optimization terminated: average change in the fitness value

less than options.TolFun.

xga =

    0.0236   -0.0180

fga =

    0.0017

flga =

     1

oga = 

    problemtype: 'unconstrained'

       rngstate: [1x1 struct]

    generations: 107

      funccount: 5400

        message: 'Optimization terminated: average change in the fitness value less...'

  maxconstraint: []

• xga is the minimizing point.
• fga is the value of the objective, rf2, at xga.
• flga is the exit flag. An exit flag of 1 indicates xga is a local minimum.
• oga is the output structure, which describes the ga calculations leading to the

solution.

particleswarm

Like ga, particleswarm is a population-based algorithm. So for a fair comparison of
solvers, initialize the particle swarm to the same population as ga.

rng default % for reproducibility

rf2 = @(x)rastriginsfcn(x/10); % objective

opts = optimoptions('particleswarm','InitialSwarm',initpop);

[xpso,fpso,flgpso,opso] = particleswarm(rf2,2,[],[],opts)

    Optimization ended: relative change in the objective value 
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    over the last OPTIONS.StallIterLimit iterations is less than OPTIONS.TolFun.

xpso =

   1.0e-06 *

   -0.8839    0.3073

fpso =

   1.7373e-12

flgpso =

     1

opso = 

      rngstate: [1x1 struct]

    iterations: 114

     funccount: 2300

       message: 'Optimization ended: relative change in the objective value …'

• xpso is the minimizing point.
• fpso is the value of the objective, rf2, at xpso.
• flgpso is the exit flag. An exit flag of 1 indicates xpso is a local minimum.
• opso is the output structure, which describes the particleswarm calculations

leading to the solution.

GlobalSearch

To solve the optimization problem using the GlobalSearch solver, enter:

rf2 = @(x)rastriginsfcn(x/10); % objective

x0 = [20,30]; % start point away from the minimum

problem = createOptimProblem('fmincon','objective',rf2,...

    'x0',x0);

gs = GlobalSearch;

[xg,fg,flg,og] = run(gs,problem)
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problem is an optimization problem structure. problem specifies the fmincon
solver, the rf2 objective function, and x0=[20,30]. For more information on using
createOptimProblem, see “Create Problem Structure” on page 3-6.

Note: You must specify fmincon as the solver for GlobalSearch, even for
unconstrained problems.

gs is a default GlobalSearch object. The object contains options for solving the problem.
Calling run(gs,problem) runs problem from multiple start points. The start points
are random, so the following result is also random.

In this case, the run returns:
GlobalSearch stopped because it analyzed all the trial points.

All 4 local solver runs converged with a positive local solver exit flag.

xg =

   1.0e-07 *

   -0.1405   -0.1405

fg =

     0

flg =

     1

og = 

                funcCount: 2178

         localSolverTotal: 4

       localSolverSuccess: 4

    localSolverIncomplete: 0

    localSolverNoSolution: 0

                  message: 'GlobalSearch stopped because it analyzed all the trial po...'

• xg is the minimizing point.
• fg is the value of the objective, rf2, at xg.
• flg is the exit flag. An exit flag of 1 indicates all fmincon runs converged properly.
• og is the output structure, which describes the GlobalSearch calculations leading to

the solution.

Compare Syntax and Solutions

One solution is better than another if its objective function value is smaller than the
other. The following table summarizes the results, accurate to one decimal.
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Results fminunc patternsearch ga particleswarm GlobalSearch

solution [19.9 29.9] [19.9 -9.9] [0 0] [0 0] [0 0]

objective 12.9 5 0 0 0

# Fevals 15 174 5400 2300 2178

These results are typical:

• fminunc quickly reaches the local solution within its starting basin, but does not
explore outside this basin at all. fminunc has simple calling syntax.

• patternsearch takes more function evaluations than fminunc, and searches
through several basins, arriving at a better solution than fminunc. patternsearch
calling syntax is the same as that of fminunc.

• ga takes many more function evaluations than patternsearch. By chance it arrived
at a better solution. In this case, ga found a point near the global optimum. ga is
stochastic, so its results change with every run. ga has simple calling syntax, but
there are extra steps to have an initial population near [20,30].

• particleswarm takes fewer function evaluations than ga, but more than
patternsearch. In this case, particleswarm found the global optimum.
particleswarm is stochastic, so its results change with every run. particleswarm
has simple calling syntax, but there are extra steps to have an initial population near
[20,30].

• GlobalSearch run takes the same order of magnitude of function evaluations as
ga and particleswarm, searches many basins, and arrives at a good solution. In
this case, GlobalSearch found the global optimum. Setting up GlobalSearch is
more involved than setting up the other solvers. As the example shows, before calling
GlobalSearch, you must create both a GlobalSearch object (gs in the example),
and a problem structure (problem). Then, call the run method with gs and problem.
For more details on how to run GlobalSearch, see “Optimization Workflow” on page
3-3.
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What Is Global Optimization?

In this section...

“Local vs. Global Optima” on page 1-12
“Basins of Attraction” on page 1-13

Local vs. Global Optima

Optimization is the process of finding the point that minimizes a function. More
specifically:

• A local minimum of a function is a point where the function value is smaller than or
equal to the value at nearby points, but possibly greater than at a distant point.

• A global minimum is a point where the function value is smaller than or equal to the
value at all other feasible points.

Local minimum

Global minimum

Generally, Optimization Toolbox solvers find a local optimum. (This local optimum can be
a global optimum.) They find the optimum in the basin of attraction of the starting point.
For more information, see “Basins of Attraction” on page 1-13.

In contrast, Global Optimization Toolbox solvers are designed to search through more
than one basin of attraction. They search in various ways:

• GlobalSearch and MultiStart generate a number of starting points. They then use a
local solver to find the optima in the basins of attraction of the starting points.

• ga uses a set of starting points (called the population) and iteratively generates better
points from the population. As long as the initial population covers several basins, ga
can examine several basins.

• simulannealbnd performs a random search. Generally, simulannealbnd accepts a
point if it is better than the previous point. simulannealbnd occasionally accepts a
worse point, in order to reach a different basin.
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• patternsearch looks at a number of neighboring points before accepting one of
them. If some neighboring points belong to different basins, patternsearch in
essence looks in a number of basins at once.

Basins of Attraction

If an objective function f(x) is smooth, the vector –∇f(x) points in the direction where f(x)
decreases most quickly. The equation of steepest descent, namely

d

dt
x t f x t( ) ( ( )),= -—

yields a path x(t) that goes to a local minimum as t gets large. Generally, initial values
x(0) that are close to each other give steepest descent paths that tend to the same
minimum point. The basin of attraction for steepest descent is the set of initial values
leading to the same local minimum.

The following figure shows two one-dimensional minima. The figure shows different
basins of attraction with different line styles, and it shows directions of steepest descent
with arrows. For this and subsequent figures, black dots represent local minima.
Every steepest descent path, starting at a point x(0), goes to the black dot in the basin
containing x(0).

f(x)

x

The following figure shows how steepest descent paths can be more complicated in more
dimensions.
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The following figure shows even more complicated paths and basins of attraction.
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Constraints can break up one basin of attraction into several pieces. For example,
consider minimizing y subject to:

• y ≥ |x|
• y ≥ 5 – 4(x–2)2.

The figure shows the two basins of attraction with the final points.

The steepest descent paths are straight lines down to the constraint boundaries. From
the constraint boundaries, the steepest descent paths travel down along the boundaries.
The final point is either (0,0) or (11/4,11/4), depending on whether the initial x-value is
above or below 2.
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Optimization Workflow

To solve an optimization problem:

1 Decide what type of problem you have, and whether you want a local or global
solution (see “Local vs. Global Optima” on page 1-12). Choose a solver per the
recommendations in “Choosing a Solver” on page 1-17.

2 Write your objective function and, if applicable, constraint functions per the syntax
in “Compute Objective Functions” on page 2-2 and “Write Constraints” on page
2-6.

3 Set appropriate options with psoptimset, gaoptimset, or saoptimset, or prepare
a GlobalSearch or MultiStart problem as described in “Optimization Workflow”
on page 3-3. For details, see “Pattern Search Options” on page 10-9,
“Genetic Algorithm Options” on page 10-28, or “Simulated Annealing Options” on
page 10-62.

4 Run the solver.
5 Examine the result. For information on the result, see “Solver Outputs and Iterative

Display” in the Optimization Toolbox documentation or Examine Results for
GlobalSearch or MultiStart.

6 If the result is unsatisfactory, change options or start points or otherwise update
your optimization and rerun it. For information, see Improve Results, or see “When
the Solver Fails ”, “When the Solver Might Have Succeeded ”, or “When the Solver
Succeeds ” in the Optimization Toolbox documentation.
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Choosing a Solver

In this section...

“Table for Choosing a Solver” on page 1-17
“Solver Characteristics” on page 1-21
“Why Are Some Solvers Objects?” on page 1-23

Table for Choosing a Solver

There are seven Global Optimization Toolbox solvers:

• ga (genetic algorithm)
• GlobalSearch
• MultiStart
• patternsearch, also called direct search
• particleswarm

• simulannealbnd (simulated annealing)
• gamultiobj, which is not a minimizer; see “Multiobjective Optimization”

Choose an optimizer based on problem characteristics and on the type of solution you
want. “Solver Characteristics” on page 1-21 contains more information to help you
decide which solver is likely to be most suitable.

Desired Solution Smooth Objective and Constraints Nonsmooth Objective or Constraints

“Explanation of “Desired
Solution”” on page 1-18

“Choosing Between Solvers
for Smooth Problems” on page
1-19

“Choosing Between Solvers for
Nonsmooth Problems” on page
1-20

Single local solution Optimization Toolbox functions;
see “Optimization Decision Table”
in the Optimization Toolbox
documentation

fminbnd, patternsearch,
fminsearch, ga,
particleswarm,
simulannealbnd

Multiple local solutions GlobalSearch, MultiStart  
Single global solution GlobalSearch, MultiStart,

patternsearch, ga,
simulannealbnd

patternsearch,
ga, particleswarm,
simulannealbnd
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Desired Solution Smooth Objective and Constraints Nonsmooth Objective or Constraints

Single local solution using
parallel processing

MultiStart, Optimization
Toolbox functions

patternsearch, ga,
particleswarm

Multiple local solutions
using parallel processing

MultiStart  

Single global solution
using parallel processing

MultiStart patternsearch, ga,
particleswarm

Explanation of “Desired Solution”

To understand the meaning of the terms in “Desired Solution,” consider the example
f(x)=100x2(1–x)2–x,

which has local minima x1 near 0 and x2 near 1:

The minima are located at:

x1 = fminsearch(@(x)(100*x^2*(x - 1)^2 - x),0)

x1 =

    0.0051

x2 = fminsearch(@(x)(100*x^2*(x - 1)^2 - x),1)
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x2 =

    1.0049

Description of the Terms

Term Meaning

Single local solution Find one local solution, a point x where the objective
function f(x) is a local minimum. For more details, see
“Local vs. Global Optima” on page 1-12. In the example,
both x1 and x2 are local solutions.

Multiple local solutions Find a set of local solutions. In the example, the complete
set of local solutions is {x1,x2}.

Single global solution Find the point x where the objective function f(x) is a
global minimum. In the example, the global solution is x2.

Choosing Between Solvers for Smooth Problems

Single Global Solution

1 Try GlobalSearch first. It is most focused on finding a global solution, and has an
efficient local solver, fmincon.

2 Try MultiStart second. It has efficient local solvers, and can search a wide variety
of start points.

3 Try patternsearch third. It is less efficient, since it does not use gradients.
However, patternsearch is robust and is more efficient than the remaining local
solvers.

4 Try particleswarm fourth, if your problem is unconstrained or has only bound
constraints. Usually, particleswarm is more efficient than the remaining solvers,
and can be more efficient than patternsearch.

5 Try ga fifth. It can handle all types of constraints, and is usually more efficient than
simulannealbnd.

6 Try simulannealbnd last. It can handle problems with no constraints or bound
constraints. simulannealbnd is usually the least efficient solver. However, given a
slow enough cooling schedule, it can find a global solution.

Multiple Local Solutions

GlobalSearch and MultiStart both provide multiple local solutions. For the syntax to
obtain multiple solutions, see “Multiple Solutions” on page 3-25. GlobalSearch and
MultiStart differ in the following characteristics:



1 Introducing Global Optimization Toolbox Functions

1-20

• MultiStart can find more local minima. This is because GlobalSearch rejects
many generated start points (initial points for local solution). Essentially,
GlobalSearch accepts a start point only when it determines that the point has a
good chance of obtaining a global minimum. In contrast, MultiStart passes all
generated start points to a local solver. For more information, see “GlobalSearch
Algorithm” on page 3-46.

• MultiStart offers a choice of local solver: fmincon, fminunc, lsqcurvefit, or
lsqnonlin. The GlobalSearch solver uses only fmincon as its local solver.

• GlobalSearch uses a scatter-search algorithm for generating start points. In
contrast, MultiStart generates points uniformly at random within bounds, or allows
you to provide your own points.

• MultiStart can run in parallel. See “How to Use Parallel Processing” on page
9-12.

Choosing Between Solvers for Nonsmooth Problems

Choose the applicable solver with the lowest number. For problems with integer
constraints, use ga.

1 Use fminbnd first on one-dimensional bounded problems only. fminbnd provably
converges quickly in one dimension.

2 Use patternsearch on any other type of problem. patternsearch provably
converges, and handles all types of constraints.

3 Try fminsearch next for low-dimensional unbounded problems. fminsearch is
not as general as patternsearch and can fail to converge. For low-dimensional
problems, fminsearch is simple to use, since it has few tuning options.

4 Try particleswarm next on unbounded or bound-constrained problems.
particleswarm has little supporting theory, but is often an efficient algorithm.

5 Try ga next. ga has little supporting theory and is often less efficient than
patternsearch or particleswarm. It handles all types of constraints. ga is the
only solver that handles integer constraints.

6 Try simulannealbnd last for unbounded problems, or for problems with bounds.
simulannealbnd provably converges only for a logarithmic cooling schedule, which
is extremely slow. simulannealbnd takes only bound constraints, and is often less
efficient than ga.
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Solver Characteristics

Solver Convergence Characteristics

Deterministic iterates
Gradient-based
Automatic stochastic start points

GlobalSearch Fast convergence to local optima
for smooth problems.

Removes many start points
heuristically
Deterministic iterates
Can run in parallel; see “How to Use
Parallel Processing” on page 9-12
Gradient-based
Stochastic or deterministic start
points, or combination of both
Automatic stochastic start points
Runs all start points

MultiStart Fast convergence to local optima
for smooth problems.

Choice of local solver: fmincon,
fminunc, lsqcurvefit, or
lsqnonlin

Deterministic iterates
Can run in parallel; see “How to Use
Parallel Processing” on page 9-12
No gradients

patternsearch Proven convergence to local
optimum, slower than gradient-
based solvers.

User-supplied start point
Stochastic iterates
Can run in parallel; see “How to Use
Parallel Processing” on page 9-12
Population-based
No gradients

particleswarm No convergence proof.

Automatic start population, or user-
supplied population, or combination of
both
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Solver Convergence Characteristics

Only bound constraints
Stochastic iterates
Can run in parallel; see “How to Use
Parallel Processing” on page 9-12
Population-based
No gradients
Allows integer constraints; see “Mixed
Integer Optimization” on page 5-27

ga No convergence proof.

Automatic start population, or user-
supplied population, or combination of
both
Stochastic iterates
No gradients
User-supplied start point

simulannealbnd Proven to converge to global
optimum for bounded problems
with very slow cooling schedule.

Only bound constraints

Explanation of some characteristics:

• Convergence — Solvers can fail to converge to any solution when started far from a
local minimum. When started near a local minimum, gradient-based solvers converge
to a local minimum quickly for smooth problems. patternsearch provably converges
for a wide range of problems, but the convergence is slower than gradient-based
solvers. Both ga and simulannealbnd can fail to converge in a reasonable amount of
time for some problems, although they are often effective.

• Iterates — Solvers iterate to find solutions. The steps in the iteration are iterates.
Some solvers have deterministic iterates. Others use random numbers and have
stochastic iterates.

• Gradients — Some solvers use estimated or user-supplied derivatives in calculating
the iterates. Other solvers do not use or estimate derivatives, but use only objective
and constraint function values.

• Start points — Most solvers require you to provide a starting point for the
optimization. One reason they require a start point is to obtain the dimension of
the decision variables. ga does not require any starting points, because it takes the
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dimension of the decision variables as an input. ga can generate its start population
automatically.

Compare the characteristics of Global Optimization Toolbox solvers to Optimization
Toolbox solvers.

Solver Convergence Characteristics

Deterministic iterates
Gradient-based

fmincon,
fminunc, fseminf,
lsqcurvefit,
lsqnonlin

Proven quadratic convergence
to local optima for smooth
problems

User-supplied starting point

Deterministic iterates
No gradients
User-supplied start point

fminsearch No convergence proof —
counterexamples exist.

No constraints
Deterministic iterates
No gradients
User-supplied start point

fminbnd Proven convergence to local
optima for smooth problems,
slower than quadratic.

Only one-dimensional problems

All these Optimization Toolbox solvers:

• Have deterministic iterates
• Start from one user-supplied point
• Search just one basin of attraction

Why Are Some Solvers Objects?

GlobalSearch and MultiStart are objects. What does this mean for you?

• You create a GlobalSearch or MultiStart object before running your problem.
• You can reuse the object for running multiple problems.
• GlobalSearch and MultiStart objects are containers for algorithms and global

options. You use these objects to run a local solver multiple times. The local solver has
its own options.



1 Introducing Global Optimization Toolbox Functions

1-24

For more information, see the “Object-Oriented Programming” documentation.
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Write Files for Optimization Functions

• “Compute Objective Functions” on page 2-2
• “Write Constraints” on page 2-6
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Compute Objective Functions

In this section...

“Objective (Fitness) Functions” on page 2-2
“Write a Function File” on page 2-2
“Write a Vectorized Function” on page 2-3
“Gradients and Hessians” on page 2-4
“Maximizing vs. Minimizing” on page 2-5

Objective (Fitness) Functions

To use Global Optimization Toolbox functions, first write a file (or an anonymous
function) that computes the function you want to optimize. This is called an objective
function for most solvers, or fitness function for ga. The function should accept a
vector, whose length is the number of independent variables, and return a scalar. For
gamultiobj, the function should return a row vector of objective function values. For
vectorized solvers, the function should accept a matrix, where each row represents one
input vector, and return a vector of objective function values. This section shows how to
write the file.

Write a Function File

This example shows how to write a file for the function you want to optimize. Suppose
that you want to minimize the function

f x x x x x x x( ) .= - + + -1
2

1 2 1 2
2

22 6 4 3

The file that computes this function must accept a vector x of length 2, corresponding to
the variables x1 and x2, and return a scalar equal to the value of the function at x.

1 Select New > Script (Ctrl+N) from the MATLAB File menu. A new file opens in the
editor.

2 Enter the following two lines of code:

function z = my_fun(x)
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z = x(1)^2 - 2*x(1)*x(2) + 6*x(1) + 4*x(2)^2 - 3*x(2);

3 Save the file in a folder on the MATLAB path.

Check that the file returns the correct value.

my_fun([2 3])

ans =

   31

For gamultiobj, suppose you have three objectives. Your objective function returns a
three-element vector consisting of the three objective function values:

function z = my_fun(x)

z = zeros(1,3); % allocate output

z(1) = x(1)^2 - 2*x(1)*x(2) + 6*x(1) + 4*x(2)^2 - 3*x(2);

z(2) = x(1)*x(2) + cos(3*x(2)/(2+x(1)));

z(3) = tanh(x(1) + x(2));

Write a Vectorized Function

The ga, gamultiobj, and patternsearch solvers optionally compute the objective
functions of a collection of vectors in one function call. This method can take less time
than computing the objective functions of the vectors serially. This method is called a
vectorized function call.

To compute in vectorized fashion:

• Write your objective function to:

• Accept a matrix with an arbitrary number of rows.
• Return the vector of function values of each row.
• For gamultiobj, return a matrix, where each row contains the objective function

values of the corresponding input matrix row.
• If you have a nonlinear constraint, be sure to write the constraint in a vectorized

fashion. For details, see “Vectorized Constraints” on page 2-7.
• Set the Vectorized option to 'on' with gaoptimset or psoptimset, or set User

function evaluation > Evaluate objective/fitness and constraint functions to
vectorized in the Optimization app. For patternsearch, also set CompletePoll
to 'on'. Be sure to pass the options structure to the solver.
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For example, to write the objective function of “Write a Function File” on page 2-2 in
a vectorized fashion,

function z = my_fun(x)

z = x(:,1).^2 - 2*x(:,1).*x(:,2) + 6*x(:,1) + ...

   4*x(:,2).^2 - 3*x(:,2);

To use my_fun as a vectorized objective function for patternsearch:

options = psoptimset('CompletePoll','on','Vectorized','on');

[x fval] = patternsearch(@my_fun,[1 1],[],[],[],[],[],[],...

    [],options);

To use my_fun as a vectorized objective function for ga:

options = gaoptimset('Vectorized','on');

[x fval] = ga(@my_fun,2,[],[],[],[],[],[],[],options);

For gamultiobj,

function z = my_fun(x)

z = zeros(size(x,1),3); % allocate output

z(:,1) = x(:,1).^2 - 2*x(:,1).*x(:,2) + 6*x(:,1) + ...

   4*x(:,2).^2 - 3*x(:,2);

z(:,2) = x(:,1).*x(:,2) + cos(3*x(:,2)./(2+x(:,1)));

z(:,3) = tanh(x(:,1) + x(:,2));

To use my_fun as a vectorized objective function for gamultiobj:

options = gaoptimset('Vectorized','on');

[x fval] = gamultiobj(@my_fun,2,[],[],[],[],[],[],options);

For more information on writing vectorized functions for patternsearch, see “Vectorize
the Objective and Constraint Functions” on page 4-80. For more information on
writing vectorized functions for ga, see “Vectorize the Fitness Function” on page 5-110.

Gradients and Hessians

If you use GlobalSearch or MultiStart, your objective function can return derivatives
(gradient, Jacobian, or Hessian). For details on how to include this syntax in your
objective function, see “Writing Objective Functions” in the Optimization Toolbox
documentation. Use optimoptions to set options so that your solver uses the derivative
information:
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Local Solver = fmincon, fminunc

Condition Option Setting

Objective function contains gradient 'GradObj' = 'on'

Objective function contains Hessian 'Hessian' = 'on'

Constraint function contains gradient 'GradConstr' = 'on'

Calculate Hessians of Lagrangian in an
extra function

'Hessian' = 'on', 'HessFcn' =
function handle

For more information about Hessians for fmincon, see “Hessian”.

Local Solver = lsqcurvefit, lsqnonlin

Condition Option Setting

Objective function contains Jacobian 'Jacobian' = 'on'

Maximizing vs. Minimizing

Global Optimization Toolbox optimization functions minimize the objective or fitness
function. That is, they solve problems of the form

min ( ).
x

f x

If you want to maximize f(x), minimize –f(x), because the point at which the minimum of
–f(x) occurs is the same as the point at which the maximum of f(x) occurs.

For example, suppose you want to maximize the function

f x x x x x x x( ) .= - + + -1
2

1 2 1 2
2

22 6 4 3

Write your function file to compute

g x f x x x x x x x( ) ( ) ,= - = - + - - +1
2

1 2 1 2
2

22 6 4 3

and minimize g(x).
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Write Constraints

In this section...

“Consult Optimization Toolbox Documentation” on page 2-6
“Set Bounds” on page 2-6
“Ensure ga Options Maintain Feasibility” on page 2-7
“Gradients and Hessians” on page 2-7
“Vectorized Constraints” on page 2-7

Consult Optimization Toolbox Documentation

Many Global Optimization Toolbox functions accept bounds, linear constraints, or
nonlinear constraints. To see how to include these constraints in your problem, see
“Writing Constraints” in the Optimization Toolbox documentation. Try consulting these
pertinent links to sections:

• “Bound Constraints”
• “Linear Inequality Constraints” (linear equality constraints have the same form)
• “Nonlinear Constraints ”

Set Bounds

It is more important to set bounds for global solvers than for local solvers. Global solvers
use bounds in a variety of ways:

• GlobalSearch requires bounds for its scatter-search point generation. If you do not
provide bounds, GlobalSearch bounds each component below by -9999 and above
by 10001. However, these bounds can easily be inappropriate.

• If you do not provide bounds and do not provide custom start points, MultiStart
bounds each component below by -1000 and above by 1000. However, these bounds
can easily be inappropriate.

• ga uses bounds and linear constraints for its initial population generation. For
unbounded problems, ga uses a default of 0 as the lower bound and 1 as the upper
bound for each dimension for initial point generation. For bounded problems, and
problems with linear constraints, ga uses the bounds and constraints to make the
initial population.
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• simulannealbnd and patternsearch do not require bounds, although they can use
bounds.

Ensure ga Options Maintain Feasibility

The ga solver generally maintains strict feasibility with respect to bounds and linear
constraints. This means that, at every iteration, all members of a population satisfy the
bounds and linear constraints.

However, you can set options that cause this feasibility to fail. For example if you
set MutationFcn to @mutationgaussian or @mutationuniform, the mutation
function does not respect constraints, and your population can become infeasible.
Similarly, some crossover functions can cause infeasible populations, although the
default gacreationlinearfeasible does respect bounds and linear constraints. Also,
ga can have infeasible points when using custom mutation or crossover functions.

To ensure feasibility, use the default crossover and mutation functions for ga. Be
especially careful that any custom functions maintain feasibility with respect to bounds
and linear constraints.

Gradients and Hessians

If you use GlobalSearch or MultiStart with fmincon, your nonlinear constraint
functions can return derivatives (gradient or Hessian). For details, see “Gradients and
Hessians” on page 2-4.

Vectorized Constraints

The ga and patternsearch solvers optionally compute the nonlinear constraint
functions of a collection of vectors in one function call. This method can take less time
than computing the objective functions of the vectors serially. This method is called a
vectorized function call.

For the solver to compute in a vectorized manner, you must vectorize both your objective
(fitness) function and nonlinear constraint function. For details, see “Vectorize the
Objective and Constraint Functions” on page 4-80.

As an example, suppose your nonlinear constraints for a three-dimensional problem are
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The following code gives these nonlinear constraints in a vectorized fashion, assuming
that the rows of your input matrix x are your population or input vectors:

function [c ceq] = nlinconst(x)

c(:,1) = x(:,1).^2/4 + x(:,2).^2/9 + x(:,3).^2/25 - 6;

c(:,2) = cosh(x(:,1) + x(:,2)) - x(:,3);

ceq = x(:,1).*x(:,2).*x(:,3) - 2;

For example, minimize the vectorized quadratic function

function y = vfun(x)

y = -x(:,1).^2 - x(:,2).^2 - x(:,3).^2;

over the region with constraints nlinconst using patternsearch:

options = psoptimset('CompletePoll','on','Vectorized','on');

[x fval] = patternsearch(@vfun,[1,1,2],[],[],[],[],[],[],...

    @nlinconst,options)

Optimization terminated: mesh size less than options.TolMesh

 and constraint violation is less than options.TolCon.

x =

    0.2191    0.7500   12.1712

fval =

 -148.7480

Using ga:

options = gaoptimset('Vectorized','on');

[x fval] = ga(@vfun,3,[],[],[],[],[],[],@nlinconst,options)

Optimization terminated: maximum number of generations exceeded.

x =

   -1.4098   -0.1216   11.6664

fval =
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 -138.1066

For this problem patternsearch computes the solution far more quickly and
accurately.
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Using GlobalSearch and MultiStart

• “Problems That GlobalSearch and MultiStart Can Solve” on page 3-2
• “Optimization Workflow” on page 3-3
• “Inputs for Problem Structure” on page 3-5
• “Create Problem Structure” on page 3-6
• “Create Solver Object” on page 3-14
• “Set Start Points for MultiStart” on page 3-17
• “Run the Solver” on page 3-20
• “Single Solution” on page 3-24
• “Multiple Solutions” on page 3-25
• “Iterative Display” on page 3-30
• “Global Output Structures” on page 3-33
• “Visualize the Basins of Attraction” on page 3-34
• “Output Functions for GlobalSearch and MultiStart” on page 3-37
• “Plot Functions for GlobalSearch and MultiStart” on page 3-40
• “How GlobalSearch and MultiStart Work” on page 3-44
• “Can You Certify a Solution Is Global?” on page 3-53
• “Refine Start Points” on page 3-57
• “Change Options” on page 3-65
• “Reproduce Results” on page 3-69
• “Find Global or Multiple Local Minima” on page 3-72
• “Optimize Using Only Feasible Start Points” on page 3-80
• “MultiStart Using lsqcurvefit or lsqnonlin” on page 3-85
• “Parallel MultiStart” on page 3-89
• “Isolated Global Minimum” on page 3-92
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Problems That GlobalSearch and MultiStart Can Solve

The GlobalSearch and MultiStart solvers apply to problems with smooth objective
and constraint functions. The solvers search for a global minimum, or for a set of local
minima. For more information on which solver to use, see “Choosing a Solver” on page
1-17.

GlobalSearch and MultiStart work by starting a local solver, such as fmincon,
from a variety of start points. Generally the start points are random. However, for
MultiStart you can provide a set of start points. For more information, see “How
GlobalSearch and MultiStart Work” on page 3-44.

To find out how to use these solvers, see “Optimization Workflow” on page 3-3.
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Optimization Workflow

To find a global or multiple local solutions:

1 “Create Problem Structure” on page 3-6
2 “Create Solver Object” on page 3-14
3 (Optional, MultiStart only) “Set Start Points for MultiStart” on page 3-17
4 “Run the Solver” on page 3-20

The following figure illustrates these steps.
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Information
you have Objective Constraints

X0Local Solver

Local Options

Global options

Start Points Object

RandomStartPointSet
or

CustomStartPointSet

Start Points

Optional,
MultiStart only

Command
to use

createOptimProblem
GlobalSearch

or
MultiStart

Solver ObjectProblem Structure
Resulting
Object or
Structure

run

Results
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Inputs for Problem Structure

A problem structure defines a local optimization problem using a local solver, such as
fmincon. Therefore, most of the documentation on choosing a solver or preparing the
inputs is in the Optimization Toolbox documentation.

Required Inputs

Input More Information

Local solver “Optimization Decision Table” in the Optimization Toolbox
documentation.

Objective function “Compute Objective Functions” on page 2-2
Start point x0 Gives the dimension of points for the objective function.

Optional Inputs

Input More Information

Constraint functions “Write Constraints” on page 2-6
Local options structure “Set Options”
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Create Problem Structure

In this section...

“About Problem Structures” on page 3-6
“Using the createOptimProblem Function” on page 3-6
“Exporting from the Optimization app” on page 3-9

About Problem Structures

To use the GlobalSearch or MultiStart solvers, you must first create a
problem structure. There are two ways to create a problem structure: using the
createOptimProblem function and exporting from the Optimization app.

For information on creating inputs for the problem structure, see “Inputs for Problem
Structure” on page 3-5.

Using the createOptimProblem Function

Follow these steps to create a problem structure using the createOptimProblem
function.

1 Define your objective function as a file or anonymous function. For details, see
“Compute Objective Functions” on page 2-2. If your solver is lsqcurvefit or
lsqnonlin, ensure the objective function returns a vector, not scalar.

2 If relevant, create your constraints, such as bounds and nonlinear constraint
functions. For details, see “Write Constraints” on page 2-6.

3 Create a start point. For example, to create a three-dimensional random start point
xstart:

xstart = randn(3,1);

4 (Optional) Create an options structure using optimoptions. For example,

options = optimoptions(@fmincon,'Algorithm','interior-point');

5 Enter

problem = createOptimProblem(solver,
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where solver is the name of your local solver:

• For GlobalSearch: 'fmincon'
• For MultiStart the choices are:

• 'fmincon'

• 'fminunc'

• 'lsqcurvefit'

• 'lsqnonlin'

For help choosing, see “Optimization Decision Table”.
6 Set an initial point using the 'x0' parameter. If your initial point is xstart, and

your solver is fmincon, your entry is now

problem = createOptimProblem('fmincon','x0',xstart,

7 Include the function handle for your objective function in objective:

problem = createOptimProblem('fmincon','x0',xstart, ...

    'objective',@objfun,

8 Set bounds and other constraints as applicable.

Constraint Name

lower bounds 'lb'

upper bounds 'ub'

matrix Aineq for linear inequalities Aineq x ≤ bineq 'Aineq'

vector bineq for linear inequalities Aineq x ≤ bineq 'bineq'

matrix Aeq for linear equalities Aeq x = beq 'Aeq'

vector beq for linear equalities Aeq x = beq 'beq'

nonlinear constraint function 'nonlcon'

9 If using the lsqcurvefit local solver, include vectors of input data and response
data, named 'xdata' and 'ydata' respectively.

10 Best practice: validate the problem structure by running your solver on the structure.
For example, if your local solver is fmincon:

[x fval eflag output] = fmincon(problem);
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Example: Creating a Problem Structure with createOptimProblem

This example minimizes the function from “Run the Solver” on page 3-20, subject to
the constraint x1 + 2x2 ≥ 4. The objective is
sixmin = 4x2 – 2.1x4 + x6/3 + xy – 4y2 + 4y4.

Use the interior-point algorithm of fmincon, and set the start point to [2;3].

1 Write a function handle for the objective function.

sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...

    + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);

2 Write the linear constraint matrices. Change the constraint to “less than” form:

A = [-1,-2];

b = -4;

3 Create the local options structure to use the interior-point algorithm:

opts = optimoptions(@fmincon,'Algorithm','interior-point');

4 Create the problem structure with createOptimProblem:

problem = createOptimProblem('fmincon', ...

    'x0',[2;3],'objective',sixmin, ...

    'Aineq',A,'bineq',b,'options',opts)

5 The resulting structure:

problem = 

    objective: @(x)(4*x(1)^2-2.1*x(1)^4+x(1)^6/3+x(1)*x(2)-4*x(2)^2+4*x(2)^4)

           x0: [2x1 double]

        Aineq: [-1 -2]

        bineq: -4

          Aeq: []

          beq: []

           lb: []

           ub: []

      nonlcon: []

       solver: 'fmincon'

      options: [1x1 optim.options.Fmincon]

6 Best practice: validate the problem structure by running your solver on the structure:

[x fval eflag output] = fmincon(problem);
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Exporting from the Optimization app

Follow these steps to create a problem structure using the Optimization app.

1 Define your objective function as a file or anonymous function. For details, see
“Compute Objective Functions” on page 2-2. If your solver is lsqcurvefit or
lsqnonlin, ensure the objective function returns a vector, not scalar.

2 If relevant, create nonlinear constraint functions. For details, see “Nonlinear
Constraints ”.

3 Create a start point. For example, to create a three-dimensional random start point
xstart:

xstart = randn(3,1);

4 Open the Optimization app by entering optimtool at the command line, or by
choosing the Optimization app from the Apps tab.

5 Choose the local Solver.

• For GlobalSearch: fmincon (default).
• For MultiStart:

• fmincon (default)
• fminunc

• lsqcurvefit

• lsqnonlin

For help choosing, see “Optimization Decision Table”.
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6 Choose an appropriate Algorithm. For help choosing, see “Choosing the Algorithm”.

7 Set an initial point (Start point).
8 Include the function handle for your objective function in Objective function, and,

if applicable, include your Nonlinear constraint function. For example,

9 Set bounds, linear constraints, or local Options. For details on constraints, see
“Writing Constraints”.

10 Best practice: run the problem to verify the setup.

11 Choose File > Export to Workspace and select Export problem and options to
a MATLAB structure named
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Example: Creating a Problem Structure with the Optimization App

This example minimizes the function from “Run the Solver” on page 3-20, subject to
the constraint x1 + 2x2 ≥ 4. The objective is
sixmin = 4x2 – 2.1x4 + x6/3 + xy – 4y2 + 4y4.

Use the interior-point algorithm of fmincon, and set the start point to [2;3].

1 Write a function handle for the objective function.

sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...

    + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);

2 Write the linear constraint matrices. Change the constraint to “less than” form:

A = [-1,-2];

b = -4;

3 Launch the Optimization app by entering optimtool at the MATLAB command
line.

4 Set the solver, algorithm, objective, start point, and constraints.
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5 Best practice: run the problem to verify the setup.

The problem runs successfully.
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6 Choose File > Export to Workspace and select Export problem and options to
a MATLAB structure named
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Create Solver Object

In this section...

“What Is a Solver Object?” on page 3-14
“Properties (Global Options) of Solver Objects” on page 3-14
“Creating a Nondefault GlobalSearch Object” on page 3-16
“Creating a Nondefault MultiStart Object” on page 3-16

What Is a Solver Object?

A solver object contains your preferences for the global portion of the optimization.

You do not need to set any preferences. Create a GlobalSearch object named gs with
default settings as follows:

gs = GlobalSearch;

Similarly, create a MultiStart object named ms with default settings as follows:

ms = MultiStart;

Properties (Global Options) of Solver Objects

Global options are properties of a GlobalSearch or MultiStart object.

Properties for both GlobalSearch and MultiStart

Property Name Meaning

Display Detail level of iterative display. Set to 'off' for no display,
'final' (default) for a report at the end of the run, or 'iter'
for reports as the solver progresses. For more information and
examples, see “Iterative Display” on page 3-30.

TolFun Solvers consider objective function values within TolFun of
each other to be identical (not distinct). Default: 1e-6. Solvers
group solutions when the solutions satisfy both TolFun and
TolX tolerances.

TolX Solvers consider solutions within TolX distance of each other
to be identical (not distinct). Default: 1e-6. Solvers group
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Property Name Meaning

solutions when the solutions satisfy both TolFun and TolX
tolerances.

MaxTime Solvers halt if the run exceeds MaxTime seconds, as measured
by a clock (not processor seconds). Default: Inf

StartPointsToRun Choose whether to run 'all' (default) start points, only those
points that satisfy 'bounds', or only those points that are
feasible with respect to bounds and inequality constraints with
'bounds-ineqs'. For an example, see “Optimize Using Only
Feasible Start Points” on page 3-80.

OutputFcns Functions to run after each local solver run. See “Output
Functions for GlobalSearch and MultiStart” on page 3-37.
Default: []

PlotFcns Plot functions to run after each local solver run. See “Plot
Functions for GlobalSearch and MultiStart” on page 3-40.
Default: []

Properties for GlobalSearch

Property Name Meaning

NumTrialPoints Number of trial points to examine. Default: 1000
BasinRadiusFactor

DistanceThresholdFactor

MaxWaitCycle

NumStageOnePoints

PenaltyThresholdFactor

See “Properties” on page 11-44 for detailed
descriptions of these properties.

Properties for MultiStart

Property Name Meaning

UseParallel When true, MultiStart attempts to distribute start points
to multiple processors for the local solver. Disable by setting
to false (default). For details, see “How to Use Parallel
Processing” on page 9-12. For an example, see “Parallel
MultiStart” on page 3-89.
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Creating a Nondefault GlobalSearch Object

Suppose you want to solve a problem and:

• Consider local solutions identical if they are within 0.01 of each other and the function
values are within the default TolFun tolerance.

• Spend no more than 2000 seconds on the computation.

To solve the problem, create a GlobalSearch object gs as follows:

gs = GlobalSearch('TolX',0.01,'MaxTime',2000);

Creating a Nondefault MultiStart Object

Suppose you want to solve a problem such that:

• You consider local solutions identical if they are within 0.01 of each other and the
function values are within the default TolFun tolerance.

• You spend no more than 2000 seconds on the computation.

To solve the problem, create a MultiStart object ms as follows:

ms = MultiStart('TolX',0.01,'MaxTime',2000);
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Set Start Points for MultiStart

In this section...

“Four Ways to Set Start Points” on page 3-17
“Positive Integer for Start Points” on page 3-17
“RandomStartPointSet Object for Start Points” on page 3-18
“CustomStartPointSet Object for Start Points” on page 3-18
“Cell Array of Objects for Start Points” on page 3-19

Four Ways to Set Start Points

There are four ways you tell MultiStart which start points to use for the local solver:

• Pass a positive integer k. MultiStart generates k - 1 start points as if using a
RandomStartPointSet object and the problem structure. MultiStart also uses
the x0 start point from the problem structure, for a total of k start points.

• Pass a RandomStartPointSet object.
• Pass a CustomStartPointSet object.
• Pass a cell array of RandomStartPointSet and CustomStartPointSet objects.

Pass a cell array if you have some specific points you want to run, but also want
MultiStart to use other random start points.

Note: You can control whether MultiStart uses all start points, or only those points
that satisfy bounds or other inequality constraints. For more information, see “Filter
Start Points (Optional)” on page 3-51.

Positive Integer for Start Points

The syntax for running MultiStart for k start points is

[xmin,fmin,flag,outpt,allmins] = run(ms,problem,k);

The positive integer k specifies the number of start points MultiStart uses.
MultiStart generates random start points using the dimension of the problem and
bounds from the problem structure. MultiStart generates k - 1 random start points,
and also uses the x0 start point from the problem structure.
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RandomStartPointSet Object for Start Points

Create a RandomStartPointSet object as follows:

stpoints = RandomStartPointSet;

By default a RandomStartPointSet object generates 10 start points. Control the
number of start points with the NumStartPoints property. For example, to generate 40
start points:

stpoints = RandomStartPointSet('NumStartPoints',40);

You can set an ArtificialBound for a RandomStartPointSet. This
ArtificialBound works in conjunction with the bounds from the problem structure:

• If a component has no bounds, RandomStartPointSet uses a lower bound of -
ArtificialBound, and an upper bound of ArtificialBound.

• If a component has a lower bound lb but no upper bound, RandomStartPointSet
uses an upper bound of lb + 2*ArtificialBound.

• Similarly, if a component has an upper bound ub but no lower bound,
RandomStartPointSet uses a lower bound of ub - 2*ArtificialBound.

For example, to generate 100 start points with an ArtificialBound of 50:

stpoints = RandomStartPointSet('NumStartPoints',100, ...

    'ArtificialBound',50);

A RandomStartPointSet object generates start points with the same dimension as the
x0 point in the problem structure; see list.

CustomStartPointSet Object for Start Points

To use a specific set of starting points, package them in a CustomStartPointSet as
follows:

1 Place the starting points in a matrix. Each row of the matrix represents one starting
point. MultiStart runs all the rows of the matrix, subject to filtering with the
StartPointsToRun property. For more information, see “MultiStart Algorithm” on
page 3-50.

2 Create a CustomStartPointSet object from the matrix:

tpoints = CustomStartPointSet(ptmatrix);
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For example, create a set of 40 five-dimensional points, with each component of a point
equal to 10 plus an exponentially distributed variable with mean 25:

pts = -25*log(rand(40,5)) + 10;

tpoints = CustomStartPointSet(pts);

To get the original matrix of points from a CustomStartPointSet object, use the list
method:

pts = list(tpoints); % Assumes tpoints is a CustomStartPointSet

A CustomStartPointSet has two properties: DimStartPoints and NumStartPoints.
You can use these properties to query a CustomStartPointSet object. For example, the
tpoints object in the example has the following properties:

tpoints.DimStartPoints

ans =

     5

tpoints.NumStartPoints

ans =

    40

Cell Array of Objects for Start Points

To use a specific set of starting points along with some randomly generated points, pass a
cell array of RandomStartPointSet or CustomStartPointSet objects.

For example, to use both the 40 specific five-dimensional points of “CustomStartPointSet
Object for Start Points” on page 3-18 and 40 additional five-dimensional points from
RandomStartPointSet:

pts = -25*log(rand(40,5)) + 10;

tpoints = CustomStartPointSet(pts);

rpts = RandomStartPointSet('NumStartPoints',40);

allpts = {tpoints,rpts};

Run MultiStart with the allpts cell array:

% Assume ms and problem exist

[xmin,fmin,flag,outpt,allmins] = run(ms,problem,allpts);
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Run the Solver

In this section...

“Optimize by Calling run” on page 3-20
“Example of Run with GlobalSearch” on page 3-21
“Example of Run with MultiStart” on page 3-22

Optimize by Calling run

Running a solver is nearly identical for GlobalSearch and MultiStart. The only
difference in syntax is MultiStart takes an additional input describing the start points.

For example, suppose you want to find several local minima of the sixmin function
sixmin = 4x2 – 2.1x4 + x6/3 + xy – 4y2 + 4y4.

This function is also called the six-hump camel back function [3]. All the local minima lie
in the region –3 ≤ x,y ≤ 3.
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Example of Run with GlobalSearch

To find several local minima of the sixmin function using GlobalSearch, enter:

% % Set the random stream to get exactly the same output

% rng(14,'twister')

gs = GlobalSearch;

opts = optimoptions(@fmincon,'Algorithm','interior-point');

sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...

    + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);

problem = createOptimProblem('fmincon','x0',[-1,2],...

    'objective',sixmin,'lb',[-3,-3],'ub',[3,3],...

    'options',opts);

[xming,fming,flagg,outptg,manyminsg] = run(gs,problem);

The output of the run (which varies, based on the random seed):

xming,fming,flagg,outptg,manyminsg

xming =

    0.0898   -0.7127

fming =

   -1.0316

flagg =

     1

outptg =

                funcCount: 2131

         localSolverTotal: 3

       localSolverSuccess: 3

    localSolverIncomplete: 0

    localSolverNoSolution: 0

                  message: 'GlobalSearch stopped because it analyzed all the trial po...'

manyminsg = 

  1x2 GlobalOptimSolution array with properties:

    X

    Fval

    Exitflag

    Output

    X0
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Example of Run with MultiStart

To find several local minima of the sixmin function using 50 runs of fmincon with
MultiStart, enter:

% % Set the random stream to get exactly the same output

% rng(14,'twister')

ms = MultiStart;

opts = optimoptions(@fmincon,'Algorithm','interior-point');

sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...

    + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);

problem = createOptimProblem('fmincon','x0',[-1,2],...

    'objective',sixmin,'lb',[-3,-3],'ub',[3,3],...

    'options',opts);

[xminm,fminm,flagm,outptm,manyminsm] = run(ms,problem,50);

The output of the run (which varies based on the random seed):

xminm,fminm,flagm,outptm,manyminsm

xminm =

    0.0898    -0.7127

fminm =

   -1.0316

flagm =

     1

outptm = 

                funcCount: 2034

         localSolverTotal: 50

       localSolverSuccess: 50

    localSolverIncomplete: 0

    localSolverNoSolution: 0

                  message: 'MultiStart completed the runs from all start points.…'

manyminsm = 

  1x6 GlobalOptimSolution array with properties:

    X

    Fval

    Exitflag

    Output
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    X0

In this case, MultiStart located all six local minima, while GlobalSearch located two.
For pictures of the MultiStart solutions, see “Visualize the Basins of Attraction” on
page 3-34.
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Single Solution

You obtain the single best solution found during the run by calling run with the syntax

[x fval eflag output] = run(...);

• x is the location of the local minimum with smallest objective function value.
• fval is the objective function value evaluated at x.
• eflag is an exit flag for the global solver. Values:

Global Solver Exit Flags

2 At least one local minimum found. Some runs of the local solver
converged (had positive exit flag).

1 At least one local minimum found. All runs of the local solver converged
(had positive exit flag).

0 No local minimum found. Local solver called at least once, and at least
one local solver exceeded the MaxIter or MaxFunEvals tolerances.

-1 Solver stopped by output function or plot function.
-2 No feasible local minimum found.
-5 MaxTime limit exceeded.
-8 No solution found. All runs had local solver exit flag -1 or smaller.
-10 Failures encountered in user-provided functions.

• output is a structure with details about the multiple runs of the local solver. For
more information, see “Global Output Structures” on page 3-33.

The list of outputs is for the case eflag > 0. If eflag <= 0, then x is the following:

• If some local solutions are feasible, x represents the location of the lowest objective
function value. “Feasible” means the constraint violations are smaller than
problem.options.TolCon.

• If no solutions are feasible, x is the solution with lowest infeasibility.
• If no solutions exist, x, fval, and output are empty ([]).
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Multiple Solutions

In this section...

“About Multiple Solutions” on page 3-25
“Change the Definition of Distinct Solutions” on page 3-28

About Multiple Solutions

You obtain multiple solutions in an object by calling run with the syntax

[x fval eflag output manymins] = run(...);

manymins is a vector of solution objects; see GlobalOptimSolution. The manymins vector
is in order of objective function value, from lowest (best) to highest (worst). Each solution
object contains the following properties (fields):

• X — a local minimum
• Fval — the value of the objective function at X
• Exitflag — the exit flag for the local solver (described in the local solver function

reference page: fmincon exitflag, fminunc exitflag, lsqcurvefit exitflag, or
lsqnonlin exitflag

• Output — an output structure for the local solver (described in the local solver
function reference page: fmincon output, fminunc output, lsqcurvefit output, or
lsqnonlin output

• X0 — a cell array of start points that led to the solution point X

There are several ways to examine the vector of solution objects:

• In the MATLAB Workspace Browser. Double-click the solution object, and then
double-click the resulting display in the Variables editor.
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• Using dot notation. GlobalOptimSolution properties are capitalized. Use proper
capitalization to access the properties.
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For example, to find the vector of function values, enter:

fcnvals = [manymins.Fval]

fcnvals =

   -1.0316   -0.2155         0

To get a cell array of all the start points that led to the lowest function value (the first
element of manymins), enter:

smallX0 = manymins(1).X0

• Plot some field values. For example, to see the range of resulting Fval, enter:

histogram([manymins.Fval],10)

This results in a histogram of the computed function values. (The figure shows a
histogram from a different example than the previous few figures.)
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Change the Definition of Distinct Solutions

You might find out, after obtaining multiple local solutions, that your tolerances were
not appropriate. You can have many more local solutions than you want, spaced too
closely together. Or you can have fewer solutions than you want, with GlobalSearch or
MultiStart clumping together too many solutions.

To deal with this situation, run the solver again with different tolerances. The TolX
and TolFun tolerances determine how the solvers group their outputs into the
GlobalOptimSolution vector. These tolerances are properties of the GlobalSearch or
MultiStart object.
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For example, suppose you want to use the active-set algorithm in fmincon to solve
the problem in “Example of Run with MultiStart” on page 3-22. Further suppose that you
want to have tolerances of 0.01 for both TolX and TolFun. The run method groups local
solutions whose objective function values are within TolFun of each other, and which are
also less than TolX apart from each other. To obtain the solution:

% % Set the random stream to get exactly the same output

% rng(14,'twister')

ms = MultiStart('TolFun',0.01,'TolX',0.01);

opts = optimoptions(@fmincon,'Algorithm','active-set');

sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...

    + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);

problem = createOptimProblem('fmincon','x0',[-1,2],...

    'objective',sixmin,'lb',[-3,-3],'ub',[3,3],...

    'options',opts);

[xminm,fminm,flagm,outptm,someminsm] = run(ms,problem,50);

MultiStart completed the runs from all start points.

All 50 local solver runs converged with a

positive local solver exit flag.

someminsm

someminsm = 

  1x5 GlobalOptimSolution

  Properties:

    X

    Fval

    Exitflag

    Output

    X0

In this case, MultiStart generated five distinct solutions. Here “distinct” means that
the solutions are more than 0.01 apart in either objective function value or location.
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Iterative Display

In this section...

“Types of Iterative Display” on page 3-30
“Examine Types of Iterative Display” on page 3-30

Types of Iterative Display

Iterative display gives you information about the progress of solvers during their runs.

There are two types of iterative display:

• Global solver display
• Local solver display

Both types appear at the command line, depending on global and local options.

Obtain local solver iterative display by setting the Display option in the
problem.options structure to 'iter' or 'iter-detailed' with optimoptions. For
more information, see “Iterative Display” in the Optimization Toolbox documentation.

Obtain global solver iterative display by setting the Display property in the
GlobalSearch or MultiStart object to 'iter'.

Global solvers set the default Display option of the local solver to 'off', unless the
problem structure has a value for this option. Global solvers do not override any setting
you make for local options.

Note: Setting the local solver Display option to anything other than 'off'
can produce a great deal of output. The default Display option created by
optimoptions(@solver) is 'final'.

Examine Types of Iterative Display

Run the example described in “Run the Solver” on page 3-20 using GlobalSearch with
GlobalSearch iterative display:
% % Set the random stream to get exactly the same output
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% rng(14,'twister')

gs = GlobalSearch('Display','iter');

opts = optimoptions(@fmincon,'Algorithm','interior-point');

sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...

    + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);

problem = createOptimProblem('fmincon','x0',[-1,2],...

    'objective',sixmin,'lb',[-3,-3],'ub',[3,3],...

    'options',opts);

[xming,fming,flagg,outptg,manyminsg] = run(gs,problem);

 Num Pts                 Best       Current    Threshold        Local        Local                 

Analyzed  F-count        f(x)       Penalty      Penalty         f(x)     exitflag        Procedure

       0       34      -1.032                                  -1.032            1    Initial Point

     200     1291      -1.032                                 -0.2155            1    Stage 1 Local

     300     1393      -1.032         248.7      -0.2137                              Stage 2 Search

     400     1493      -1.032           278        1.134                              Stage 2 Search

     446     1577      -1.032           1.6        2.073      -0.2155            1    Stage 2 Local

     500     1631      -1.032         9.055       0.3214                              Stage 2 Search

     600     1731      -1.032       -0.7299      -0.7686                              Stage 2 Search

     700     1831      -1.032        0.3191      -0.7431                              Stage 2 Search

     800     1931      -1.032         296.4       0.4577                              Stage 2 Search

     900     2031      -1.032         10.68       0.5116                              Stage 2 Search

    1000     2131      -1.032       -0.9207      -0.9254                              Stage 2 Search

GlobalSearch stopped because it analyzed all the trial points.

All 3 local solver runs converged with a positive local solver exit flag.

Run the same example without GlobalSearch iterative display, but with fmincon
iterative display:
gs.Display = 'final';

problem.options.Display = 'iter';

[xming,fming,flagg,outptg,manyminsg] = run(gs,problem);

                                            First-order      Norm of

 Iter F-count            f(x)  Feasibility   optimality         step

    0       3   4.823333e+001   0.000e+000   1.088e+002

    1       7   2.020476e+000   0.000e+000   2.176e+000   2.488e+000

    2      10   6.525252e-001   0.000e+000   1.937e+000   1.886e+000

    3      13  -8.776121e-001   0.000e+000   9.076e-001   8.539e-001

    4      16  -9.121907e-001   0.000e+000   9.076e-001   1.655e-001

    5      19  -1.009367e+000   0.000e+000   7.326e-001   8.558e-002

    6      22  -1.030423e+000   0.000e+000   2.172e-001   6.670e-002

    7      25  -1.031578e+000   0.000e+000   4.278e-002   1.444e-002

    8      28  -1.031628e+000   0.000e+000   8.777e-003   2.306e-003

    9      31  -1.031628e+000   0.000e+000   8.845e-005   2.750e-004

   10      34  -1.031628e+000   0.000e+000   8.744e-007   1.354e-006

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in 

feasible directions, to within the selected value of the function tolerance,

and constraints were satisfied to within the selected value of the constraint tolerance.

<stopping criteria details>

                                            First-order      Norm of

 Iter F-count            f(x)  Feasibility   optimality         step

    0       3   -1.980435e-02    0.000e+00    1.996e+00

... MANY ITERATIONS DELETED ...
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    8      33   -1.031628e+00    0.000e+00    8.742e-07    2.287e-07

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in 

feasible directions, to within the selected value of the function tolerance,

and constraints were satisfied to within the selected value of the constraint tolerance.

<stopping criteria details>

GlobalSearch stopped because it analyzed all the trial points.

All 4 local solver runs converged with a positive local solver exit flag.

Setting GlobalSearch iterative display, as well as fmincon iterative display, yields
both displays intermingled.

For an example of iterative display in a parallel environment, see “Parallel MultiStart”
on page 3-89.
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Global Output Structures

run can produce two types of output structures:

• A global output structure. This structure contains information about the overall run
from multiple starting points. Details follow.

• Local solver output structures. The vector of GlobalOptimSolution objects contains
one such structure in each element of the vector. For a description of this structure,
see “Output Structures” in the Optimization Toolbox documentation, or the function
reference pages for the local solvers: fmincon output, fminunc output, lsqcurvefit
output, or lsqnonlin output.

Global Output Structure

Field Meaning

funcCount Total number of calls to user-supplied functions (objective or
nonlinear constraint)

localSolverTotal Number of local solver runs started
localSolverSuccess Number of local solver runs that finished with a positive exit flag
localSolverIncomplete Number of local solver runs that finished with a 0 exit flag
localSolverNoSolution Number of local solver runs that finished with a negative exit flag
message GlobalSearch or MultiStart exit message

A positive exit flag from a local solver generally indicates a successful run. A negative
exit flag indicates a failure. A 0 exit flag indicates that the solver stopped by exceeding
the iteration or function evaluation limit. For more information, see “Exit Flags and
Exit Messages” or “Tolerances and Stopping Criteria” in the Optimization Toolbox
documentation.
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Visualize the Basins of Attraction

Which start points lead to which basin? For a steepest descent solver, nearby points
generally lead to the same basin; see “Basins of Attraction” on page 1-13. However, for
Optimization Toolbox solvers, basins are more complicated.

Plot the MultiStart start points from the example, “Example of Run with MultiStart”
on page 3-22, color-coded with the basin where they end.

% rng(14,'twister')

% Uncomment the previous line to get the same output

ms = MultiStart;

opts = optimoptions(@fmincon,'Algorithm','interior-point');

sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...

+ x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);

problem = createOptimProblem('fmincon','x0',[-1,2],...

'objective',sixmin,'lb',[-3,-3],'ub',[3,3],...

'options',opts);

[xminm,fminm,flagm,outptm,manyminsm] = run(ms,problem,50);

possColors = 'kbgcrm';

hold on

for i = 1:size(manyminsm,2)

    

    % Color of this line

    cIdx = rem(i-1, length(possColors)) + 1;

    color = possColors(cIdx);

    % Plot start points

    u = manyminsm(i).X0; 

    x0ThisMin = reshape([u{:}], 2, length(u));

    plot(x0ThisMin(1, :), x0ThisMin(2, :), '.', ...

        'Color',color,'MarkerSize',25);

    % Plot the basin with color i

    plot(manyminsm(i).X(1), manyminsm(i).X(2), '*', ...

        'Color', color, 'MarkerSize',25); 

end % basin center marked with a *, start points with dots

hold off
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The figure shows the centers of the basins by colored * symbols. Start points with the
same color as the * symbol converge to the center of the * symbol.

Start points do not always converge to the closest basin. For example, the red points are
closer to the cyan basin center than to the red basin center. Also, many black and blue
start points are closer to the opposite basin centers.

The magenta and red basins are shallow, as you can see in the following contour plot.
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Output Functions for GlobalSearch and MultiStart

In this section...

“What Are Output Functions?” on page 3-37
“GlobalSearch Output Function” on page 3-37
“No Parallel Output Functions” on page 3-39

What Are Output Functions?

Output functions allow you to examine intermediate results in an optimization.
Additionally, they allow you to halt a solver programmatically.

There are two types of output functions, like the two types of output structures:

• Global output functions run after each local solver run. They also run when the global
solver starts and ends.

• Local output functions run after each iteration of a local solver. See “Output
Functions” in the Optimization Toolbox documentation.

To use global output functions:

• Write output functions using the syntax described in “OutputFcns” on page 10-3.
• Set the OutputFcns property of your GlobalSearch or MultiStart solver to the

function handle of your output function. You can use multiple output functions by
setting the OutputFcns property to a cell array of function handles.

GlobalSearch Output Function

This output function stops GlobalSearch after it finds five distinct local minima
with positive exit flags, or after it finds a local minimum value less than 0.5. The
output function uses a persistent local variable, foundLocal, to store the local results.
foundLocal enables the output function to determine whether a local solution is distinct
from others, to within a tolerance of 1e-4.

To store local results using nested functions instead of persistent variables, see “Example
of a Nested Output Function” in the MATLAB Mathematics documentation.

1 Write the output function using the syntax described in “OutputFcns” on page
10-3.
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function stop = StopAfterFive(optimValues, state)

persistent foundLocal

stop = false;

switch state

    case 'init'

        foundLocal = []; % initialized as empty

    case 'iter'

        newf = optimValues.localsolution.Fval;

        eflag = optimValues.localsolution.Exitflag;

        % Now check if the exit flag is positive and

        % the new value differs from all others by at least 1e-4

        % If so, add the new value to the newf list

        if eflag > 0 && all(abs(newf - foundLocal) > 1e-4)

            foundLocal = [foundLocal;newf];

            % Now check if the latest value added to foundLocal

            % is less than 1/2

            % Also check if there are 5 local minima in foundLocal

            % If so, then stop

            if foundLocal(end) < 0.5 || length(foundLocal) >= 5

                stop = true;

            end

        end

end

2 Save StopAfterFive.m as a file in a folder on your MATLAB path.
3 Write the objective function and create an optimization problem structure as in

“Find Global or Multiple Local Minima” on page 3-72.

function f = sawtoothxy(x,y)

[t r] = cart2pol(x,y); % change to polar coordinates

h = cos(2*t - 1/2)/2 + cos(t) + 2;

g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4) ...

    .*r.^2./(r+1);

f = g.*h;

end

4 Save sawtoothxy.m as a file in a folder on your MATLAB path.
5 At the command line, create the problem structure:

problem = createOptimProblem('fmincon',...

    'objective',@(x)sawtoothxy(x(1),x(2)),...

    'x0',[100,-50],'options',...

    optimoptions(@fmincon,'Algorithm','sqp'));

6 Create a GlobalSearch object with @StopAfterFive as the output function, and
set the iterative display property to 'iter'.
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gs = GlobalSearch('OutputFcns',@StopAfterFive,'Display','iter');

7 (Optional) To get the same answer as this example, set the default random number
stream.

rng default

8 Run the problem.
[x fval] = run(gs,problem)

 Num Pts                 Best       Current    Threshold        Local        Local                 

Analyzed  F-count        f(x)       Penalty      Penalty         f(x)     exitflag        Procedure

       0      200       555.7                                   555.7            0    Initial Point

     200     1479   1.547e-15                               1.547e-15            1    Stage 1 Local

GlobalSearch stopped by the output or plot function.

1 out of 2 local solver runs converged with a positive local solver exit flag.

x =

   1.0e-07 *

    0.0414    0.1298

fval =

   1.5467e-15

The run stopped early because GlobalSearch found a point with a function value less
than 0.5.

No Parallel Output Functions

While MultiStart can run in parallel, it does not support global output functions and
plot functions in parallel. Furthermore, while local output functions and plot functions
run on workers when MultiStart runs in parallel, the effect differs from running
serially. Local output and plot functions do not create a display when running on
workers. You do not see any other effects of output and plot functions until the worker
passes its results to the client (the originator of the MultiStart parallel jobs).

For information on running MultiStart in parallel, see “Parallel Computing”.
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Plot Functions for GlobalSearch and MultiStart

In this section...

“What Are Plot Functions?” on page 3-40
“MultiStart Plot Function” on page 3-41
“No Parallel Plot Functions” on page 3-43

What Are Plot Functions?

The PlotFcns field of the options structure specifies one or more functions that an
optimization function calls at each iteration. Plot functions plot various measures of
progress while the algorithm executes. Pass a function handle or cell array of function
handles. The structure of a plot function is the same as the structure of an output
function. For more information on this structure, see “OutputFcns” on page 10-3.

Plot functions are specialized output functions (see “Output Functions for GlobalSearch
and MultiStart” on page 3-37). There are two predefined plot functions:

• @gsplotbestf plots the best objective function value.
• @gsplotfunccount plots the number of function evaluations.

Plot function windows have Pause and Stop buttons. By default, all plots appear in one
window.

To use global plot functions:

• Write plot functions using the syntax described in “OutputFcns” on page 10-3.
• Set the PlotFcns property of your GlobalSearch or MultiStart object to the

function handle of your plot function. You can use multiple plot functions by setting
the PlotFcns property to a cell array of function handles.

Details of Built-In Plot Functions

The built-in plot functions have characteristics that can surprise you.

• @gsplotbestf can have plots that are not strictly decreasing. This is because early
values can result from local solver runs with negative exit flags (such as infeasible
solutions). A subsequent local solution with positive exit flag is better even if its
function value is higher. Once a local solver returns a value with a positive exit flag,
the plot is monotone decreasing.
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• @gsplotfunccount might not plot the total number of function evaluations. This is
because GlobalSearch can continue to perform function evaluations after it calls the
plot function for the last time. For more information, see “GlobalSearch Algorithm” on
page 3-46Properties for GlobalSearch.

MultiStart Plot Function

This example plots the number of local solver runs it takes to obtain a better local
minimum for MultiStart. The example also uses a built-in plot function to show the
current best function value.

The example problem is the same as in “Find Global or Multiple Local Minima” on page
3-72, with additional bounds.

The example uses persistent variables to store previous best values. The plot function
examines the best function value after each local solver run, available in the bestfval
field of the optimValues structure. If the value is not lower than the previous best, the
plot function adds 1 to the number of consecutive calls with no improvement and draws
a bar chart. If the value is lower than the previous best, the plot function starts a new
bar in the chart with value 1. Before plotting, the plot function takes a logarithm of the
number of consecutive calls. The logarithm helps keep the plot legible, since some values
can be much larger than others.

To store local results using nested functions instead of persistent variables, see “Example
of a Nested Output Function” in the MATLAB Mathematics documentation.

1 Write the objective function:

function f = sawtoothxy(x,y)

[t r] = cart2pol(x,y); % change to polar coordinates

h = cos(2*t - 1/2)/2 + cos(t) + 2;

g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4) ...

    .*r.^2./(r+1);

f = g.*h;

2 Save sawtoothxy.m as a file in a folder on your MATLAB path.
3 Write the plot function:

function stop = NumberToNextBest(optimValues, state)

persistent bestfv bestcounter

stop = false;

switch state
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    case 'init'

        % Initialize variable to record best function value.

        bestfv = []; 

        

        % Initialize counter to record number of

        % local solver runs to find next best minimum.

        bestcounter = 1; 

        

        % Create the histogram.

        bar(log(bestcounter),'tag','NumberToNextBest');

        xlabel('Number of New Best Fval Found');

        ylabel('Log Number of Local Solver Runs');

        title('Number of Local Solver Runs to Find Lower Minimum')

    case 'iter'

        % Find the axes containing the histogram.

        NumToNext = ...

          findobj(get(gca,'Children'),'Tag','NumberToNextBest');

        

        % Update the counter that records number of local

        % solver runs to find next best minimum.

        if ~isequal(optimValues.bestfval, bestfv)

            bestfv = optimValues.bestfval;

            bestcounter = [bestcounter 1];

        else

            bestcounter(end) = bestcounter(end) + 1;

        end

        

        % Update the histogram.

        set(NumToNext,'Ydata',log(bestcounter))

end

4 Save NumberToNextBest.m as a file in a folder on your MATLAB path.
5 Create the problem structure and global solver. Set lower bounds of [-3e3,-4e3],

upper bounds of [4e3,3e3] and set the global solver to use the plot functions:

problem = createOptimProblem('fmincon',...

    'objective',@(x)sawtoothxy(x(1),x(2)),...

    'x0',[100,-50],'lb',[-3e3 -4e3],...

    'ub',[4e3,3e3],'options',...

    optimoptions(@fmincon,'Algorithm','sqp'));

ms = MultiStart('PlotFcns',{@NumberToNextBest,@gsplotbestf});

6 Run the global solver for 100 local solver runs:

[x fv] = run(ms,problem,100);
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7 The plot functions produce the following figure (your results can differ, since the
solution process is stochastic):

No Parallel Plot Functions

While MultiStart can run in parallel, it does not support global output functions and
plot functions in parallel. Furthermore, while local output functions and plot functions
run on workers when MultiStart runs in parallel, the effect differs from running
serially. Local output and plot functions do not create a display when running on
workers. You do not see any other effects of output and plot functions until the worker
passes its results to the client (the originator of the MultiStart parallel jobs).

For information on running MultiStart in parallel, see “Parallel Computing”.
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How GlobalSearch and MultiStart Work

In this section...

“Multiple Runs of a Local Solver” on page 3-44
“Differences Between the Solver Objects” on page 3-44
“GlobalSearch Algorithm” on page 3-46
“MultiStart Algorithm” on page 3-50
“Bibliography” on page 3-52

Multiple Runs of a Local Solver

GlobalSearch and MultiStart have similar approaches to finding global or multiple
minima. Both algorithms start a local solver (such as fmincon) from multiple start
points. The algorithms use multiple start points to sample multiple basins of attraction.
For more information, see “Basins of Attraction” on page 1-13.

Differences Between the Solver Objects

GlobalSearch and MultiStart Algorithm Overview contains a sketch of the
GlobalSearch and MultiStart algorithms.
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Run fmincon from x0

Generate trial points
(potential start points)

Stage 1:
Run best start point among the first

NumStageOnePoints trial points

Stage 2:
Loop through remaining trial points,

run fmincon if point satisfies
basin, score, and constraint filters

Create GlobalOptimSolutions vector

GlobalSearch Algorithm MultiStart Algorithm

Generate start points

Run start points

Create GlobalOptimSolutions vector

GlobalSearch and MultiStart Algorithm Overview

The main differences between GlobalSearch and MultiStart are:

• GlobalSearch uses a scatter-search mechanism for generating start points.
MultiStart uses uniformly distributed start points within bounds, or user-supplied
start points.

• GlobalSearch analyzes start points and rejects those points that are unlikely to
improve the best local minimum found so far. MultiStart runs all start points
(or, optionally, all start points that are feasible with respect to bounds or inequality
constraints).

• MultiStart gives a choice of local solver: fmincon, fminunc, lsqcurvefit, or
lsqnonlin. The GlobalSearch algorithm uses fmincon.

• MultiStart can run in parallel, distributing start points to multiple processors for
local solution. To run MultiStart in parallel, see “How to Use Parallel Processing”
on page 9-12.

Deciding Which Solver to Use

The differences between these solver objects boil down to the following decision on which
to use:
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• Use GlobalSearch to find a single global minimum most efficiently on a single
processor.

• Use MultiStart to:

• Find multiple local minima.
• Run in parallel.
• Use a solver other than fmincon.
• Search thoroughly for a global minimum.
• Explore your own start points.

GlobalSearch Algorithm

For a description of the algorithm, see Ugray et al. [1].

When you run a GlobalSearch object, the algorithm performs the following steps:

1. “Run fmincon from x0” on page 3-46
2. “Generate Trial Points” on page 3-47
3. “Obtain Stage 1 Start Point, Run” on page 3-47
4. “Initialize Basins, Counters, Threshold” on page 3-47
5. “Begin Main Loop” on page 3-48
6. “Examine Stage 2 Trial Point to See if fmincon Runs” on page 3-48
7. “When fmincon Runs” on page 3-48
8. “When fmincon Does Not Run” on page 3-49
9. “Create GlobalOptimSolution” on page 3-50

Run fmincon from x0

GlobalSearch runs fmincon from the start point you give in the problem structure.
If this run converges, GlobalSearch records the start point and end point for an initial
estimate on the radius of a basin of attraction. Furthermore, GlobalSearch records
the final objective function value for use in the score function (see “Obtain Stage 1 Start
Point, Run” on page 3-47).

The score function is the sum of the objective function value at a point and a multiple of
the sum of the constraint violations. So a feasible point has score equal to its objective
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function value. The multiple for constraint violations is initially 1000. GlobalSearch
updates the multiple during the run.

Generate Trial Points

GlobalSearch uses the scatter search algorithm to generate a set of NumTrialPoints
trial points. Trial points are potential start points. For a description of the scatter search
algorithm, see Glover [2]. GlobalSearch generates trial points within any finite bounds
you set (lb and ub). Unbounded components have artificial bounds imposed: lb =
-1e4 + 1, ub = 1e4 + 1. This range is not symmetric about the origin so that the
origin is not in the scatter search. Components with one-sided bounds have artificial
bounds imposed on the unbounded side, shifted by the finite bounds to keep lb < ub.

Obtain Stage 1 Start Point, Run

GlobalSearch evaluates the score function of a set of NumStageOnePoints trial
points. It then takes the point with the best score and runs fmincon from that point.
GlobalSearch removes the set of NumStageOnePoints trial points from its list of
points to examine.

Initialize Basins, Counters, Threshold

The localSolverThreshold is initially the smaller of the two objective function values
at the solution points. The solution points are the fmincon solutions starting from
x0 and from the Stage 1 start point. If both of these solution points do not exist or are
infeasible, localSolverThreshold is initially the penalty function value of the Stage 1
start point.

The GlobalSearch heuristic assumption is that basins of attraction are spherical. The
initial estimate of basins of attraction for the solution point from x0 and the solution
point from Stage 1 are spheres centered at the solution points. The radius of each sphere
is the distance from the initial point to the solution point. These estimated basins can
overlap.

There are two sets of counters associated with the algorithm. Each counter is the number
of consecutive trial points that:

• Lie within a basin of attraction. There is one counter for each basin.
• Have score function greater than localSolverThreshold. For a definition of the

score, see “Run fmincon from x0” on page 3-46.

All counters are initially 0.
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Begin Main Loop

GlobalSearch repeatedly examines a remaining trial point from the list, and performs
the following steps. It continually monitors the time, and stops the search if elapsed time
exceeds MaxTime seconds.

Examine Stage 2 Trial Point to See if fmincon Runs

Call the trial point p. Run fmincon from p if the following conditions hold:

• p is not in any existing basin. The criterion for every basin i is:

|p - center(i)| > DistanceThresholdFactor * radius(i).

DistanceThresholdFactor is an option (default value 0.75).

radius is an estimated radius that updates in Update Basin Radius and Threshold
and React to Large Counter Values.

• score(p) < localSolverThreshold.
• (optional) p satisfies bound and/or inequality constraints. This test occurs if you

set the StartPointsToRun property of the GlobalSearch object to 'bounds' or
'bounds-ineqs'.

When fmincon Runs

1 Reset Counters

Set the counters for basins and threshold to 0.
2 Update Solution Set

If fmincon runs starting from p, it can yield a positive exit flag, which
indicates convergence. In that case, GlobalSearch updates the vector of
GlobalOptimSolution objects. Call the solution point xp and the objective
function value fp. There are two cases:

• For every other solution point xq with objective function value fq,

|xq - xp| > TolX * max(1,|xp|)

or

|fq - fp| > TolFun * max(1,|fp|).



 How GlobalSearch and MultiStart Work

3-49

In this case, GlobalSearch creates a new element in the vector of
GlobalOptimSolution objects. For details of the information contained in each
object, see GlobalOptimSolution.

• For some other solution point xq with objective function value fq,

|xq - xp| <= TolX * max(1,|xp|)

and

|fq - fp| <= TolFun * max(1,|fp|).

In this case, GlobalSearch regards xp as equivalent to xq. The GlobalSearch
algorithm modifies the GlobalOptimSolution of xq by adding p to the cell
array of X0 points.

There is one minor tweak that can happen to this update. If the exit flag for
xq is greater than 1, and the exit flag for xp is 1, then xp replaces xq. This
replacement can lead to some points in the same basin being more than a
distance of TolX from xp.

3 Update Basin Radius and Threshold

If the exit flag of the current fmincon run is positive:

a Set threshold to the score value at start point p.
b Set basin radius for xp equal to the maximum of the existing radius (if any) and

the distance between p and xp.
4 Report to Iterative Display

When the GlobalSearch Display property is 'iter', every point that fmincon
runs creates one line in the GlobalSearch iterative display.

When fmincon Does Not Run

1 Update Counters

Increment the counter for every basin containing p. Reset the counter of every other
basin to 0.

Increment the threshold counter if score(p) >= localSolverThreshold. Otherwise,
reset the counter to 0.
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2 React to Large Counter Values

For each basin with counter equal to MaxWaitCycle, multiply the basin radius
by 1 – BasinRadiusFactor. Reset the counter to 0. (Both MaxWaitCycle and
BasinRadiusFactor are settable properties of the GlobalSearch object.)

If the threshold counter equals MaxWaitCycle, increase the threshold:
new threshold = threshold + PenaltyThresholdFactor*(1 + abs(threshold)).

Reset the counter to 0.
3 Report to Iterative Display

Every 200th trial point creates one line in the GlobalSearch iterative display.

Create GlobalOptimSolution

After reaching MaxTime seconds or running out of trial points, GlobalSearch creates a
vector of GlobalOptimSolution objects. GlobalSearch orders the vector by objective
function value, from lowest (best) to highest (worst). This concludes the algorithm.

MultiStart Algorithm

When you run a MultiStart object, the algorithm performs the following steps:

• “Generate Start Points” on page 3-50
• “Filter Start Points (Optional)” on page 3-51
• “Run Local Solver” on page 3-51
• “Check Stopping Conditions” on page 3-51
• “Create GlobalOptimSolution Object” on page 3-51

Generate Start Points

If you call MultiStart with the syntax

[x fval] = run(ms,problem,k)

for an integer k, MultiStart generates k - 1 start points exactly as if you used a
RandomStartPointSet object. The algorithm also uses the x0 start point from the
problem structure, for a total of k start points.

A RandomStartPointSet object does not have any points stored inside the object.
Instead, MultiStart calls the list method, which generates random points within the
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bounds given by the problem structure. If an unbounded component exists, list uses an
artificial bound given by the ArtificialBound property of the RandomStartPointSet
object.

If you provide a CustomStartPointSet object, MultiStart does not generate start
points, but uses the points in the object.

Filter Start Points (Optional)

If you set the StartPointsToRun property of the MultiStart object to 'bounds' or
'bounds-ineqs', MultiStart does not run the local solver from infeasible start points.
In this context, “infeasible” means start points that do not satisfy bounds, or start points
that do not satisfy both bounds and inequality constraints.

The default setting of StartPointsToRun is 'all'. In this case, MultiStart does not
discard infeasible start points.

Run Local Solver

MultiStart runs the local solver specified in problem.solver, starting at the points
that pass the StartPointsToRun filter. If MultiStart is running in parallel, it sends
start points to worker processors one at a time, and the worker processors run the local
solver.

The local solver checks whether MaxTime seconds have elapsed at each of its iterations.
If so, it exits that iteration without reporting a solution.

When the local solver stops, MultiStart stores the results and continues to the next
step.
Report to Iterative Display

When the MultiStart Display property is 'iter', every point that the local solver
runs creates one line in the MultiStart iterative display.

Check Stopping Conditions

MultiStart stops when it runs out of start points. It also stops when it exceeds a total
run time of MaxTime seconds.

Create GlobalOptimSolution Object

After MultiStart reaches a stopping condition, the algorithm creates a vector of
GlobalOptimSolution objects as follows:
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1 Sort the local solutions by objective function value (Fval) from lowest to highest. For
the lsqnonlin and lsqcurvefit local solvers, the objective function is the norm of
the residual.

2 Loop over the local solutions j beginning with the lowest (best) Fval.
3 Find all the solutions k satisfying both:

|Fval(k) - Fval(j)| <= TolFun*max(1,|Fval(j)|)

|x(k) - x(j)| <= TolX*max(1,|x(j)|)

4 Record j, Fval(j), the local solver output structure for j, and a cell array of the
start points for j and all the k. Remove those points k from the list of local solutions.
This point is one entry in the vector of GlobalOptimSolution objects.

The resulting vector of GlobalOptimSolution objects is in order by Fval, from lowest
(best) to highest (worst).

Report to Iterative Display

After examining all the local solutions, MultiStart gives a summary to the iterative
display. This summary includes the number of local solver runs that converged, the
number that failed to converge, and the number that had errors.
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Can You Certify a Solution Is Global?

In this section...

“No Guarantees” on page 3-53
“Check if a Solution Is a Local Solution with patternsearch” on page 3-53
“Identify a Bounded Region That Contains a Global Solution” on page 3-54
“Use MultiStart with More Start Points” on page 3-55

No Guarantees

How can you tell if you have located the global minimum of your objective function?
The short answer is that you cannot; you have no guarantee that the result of a Global
Optimization Toolbox solver is a global optimum.

However, you can use the strategies in this section for investigating solutions.

Check if a Solution Is a Local Solution with patternsearch

Before you can determine if a purported solution is a global minimum, first check that it
is a local minimum. To do so, run patternsearch on the problem.

To convert the problem to use patternsearch instead of fmincon or fminunc, enter

problem.solver = 'patternsearch';

Also, change the start point to the solution you just found, and clear the options:

problem.x0 = x;

problem.options = [];

For example, Check Nearby Points (in the Optimization Toolbox documentation) shows
the following:

options = optimoptions(@fmincon,'Algorithm','active-set');

ffun = @(x)(x(1)-(x(1)-x(2))^2);

problem = createOptimProblem('fmincon', ...

    'objective',ffun,'x0',[1/2 1/3], ...

    'lb',[0 -1],'ub',[1 1],'options',options);

[x fval exitflag] = fmincon(problem)
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x =

  1.0e-007 *

         0    0.1614

fval =

 -2.6059e-016

exitflag =

     1

However, checking this purported solution with patternsearch shows that there is a
better solution. Start patternsearch from the reported solution x:

% set the candidate solution x as the start point

problem.x0 = x;

problem.solver = 'patternsearch';

problem.options = [];

[xp fvalp exitflagp] = patternsearch(problem)

Optimization terminated: mesh size less than options.TolMesh.

xp =

    1.0000   -1.0000

fvalp =

   -3.0000

exitflagp =

     1

Identify a Bounded Region That Contains a Global Solution

Suppose you have a smooth objective function in a bounded region. Given enough time
and start points, MultiStart eventually locates a global solution.

Therefore, if you can bound the region where a global solution can exist, you can obtain
some degree of assurance that MultiStart locates the global solution.
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For example, consider the function

f x y x y x y
x

y
x x y y= + + + +( ) -

+

Ê

Ë
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ˆ

¯
˜̃ + + +( )6 6 2 2

2
4 2 2 4

2
1

2sin( ) cos .

The initial summands x6 + y6 force the function to become large and positive for large
values of |x| or |y|. The components of the global minimum of the function must be
within the bounds
–10 ≤ x,y ≤ 10,

since 106 is much larger than all the multiples of 104 that occur in the other summands of
the function.

You can identify smaller bounds for this problem; for example, the global minimum is
between –2 and 2. It is more important to identify reasonable bounds than it is to identify
the best bounds.

Use MultiStart with More Start Points

To check whether there is a better solution to your problem, run MultiStart with
additional start points. Use MultiStart instead of GlobalSearch for this task because
GlobalSearch does not run the local solver from all start points.

For example, see “Example: Searching for a Better Solution” on page 3-60.

Updating Unconstrained Problem from GlobalSearch

If you use GlobalSearch on an unconstrained problem, change your problem structure
before using MultiStart. You have two choices in updating a problem structure for an
unconstrained problem using MultiStart:

• Change the solver field to 'fminunc':

problem.solver = 'fminunc';

To avoid a warning if your objective function does not compute a gradient, change the
local options to have Algorithm set to 'quasi-newton':

problem.options.Algorithm = 'quasi-newton';
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• Add an artificial constraint, retaining fmincon as the local solver:

problem.lb = -Inf(size(x0));

To search a larger region than the default, see “Refine Start Points” on page 3-57.
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Refine Start Points

In this section...

“About Refining Start Points” on page 3-57
“Methods of Generating Start Points” on page 3-58
“Example: Searching for a Better Solution” on page 3-60

About Refining Start Points

If some components of your problem are unconstrained, GlobalSearch and
MultiStart use artificial bounds to generate random start points uniformly in each
component. However, if your problem has far-flung minima, you need widely dispersed
start points to find these minima.

Use these methods to obtain widely dispersed start points:

• Give widely separated bounds in your problem structure.
• Use a RandomStartPointSet object with the MultiStart algorithm. Set a large

value of the ArtificialBound property in the RandomStartPointSet object.
• Use a CustomStartPointSet object with the MultiStart algorithm. Use widely

dispersed start points.

There are advantages and disadvantages of each method.

Method Advantages Disadvantages

Automatic point generation Makes a more complex Hessian
Can use with GlobalSearch Unclear how large to set the

bounds
Easy to do Changes problem

Give bounds in problem

Bounds can be asymmetric Only uniform points
Automatic point generation MultiStart only
Does not change problem Only symmetric, uniform points

Large ArtificialBound in
RandomStartPointSet

Easy to do Unclear how large to set
ArtificialBound
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Method Advantages Disadvantages

Customizable MultiStart onlyCustomStartPointSet

Does not change problem Requires programming for
generating points

Methods of Generating Start Points

• “Uniform Grid” on page 3-58
• “Perturbed Grid” on page 3-59
• “Widely Dispersed Points for Unconstrained Components” on page 3-59

Uniform Grid

To generate a uniform grid of start points:

1 Generate multidimensional arrays with ndgrid. Give the lower bound, spacing, and
upper bound for each component.

For example, to generate a set of three-dimensional arrays with

• First component from –2 through 0, spacing 0.5
• Second component from 0 through 2, spacing 0.25
• Third component from –10 through 5, spacing 1

[X,Y,Z] = ndgrid(-2:.5:0,0:.25:2,-10:5);

2 Place the arrays into a single matrix, with each row representing one start point. For
example:

W = [X(:),Y(:),Z(:)];

In this example, W is a 720-by-3 matrix.
3 Put the matrix into a CustomStartPointSet object. For example:

custpts = CustomStartPointSet(W);

Call MultiStart run with the CustomStartPointSet object as the third input. For
example,

% Assume problem structure and ms MultiStart object exist

[x fval flag outpt manymins] = run(ms,problem,custpts);



 Refine Start Points

3-59

Perturbed Grid

Integer start points can yield less robust solutions than slightly perturbed start points.

To obtain a perturbed set of start points:

1 Generate a matrix of start points as in steps 1–2 of “Uniform Grid” on page 3-58.
2 Perturb the start points by adding a random normal matrix with 0 mean and

relatively small variance.

For the example in “Uniform Grid” on page 3-58, after making the W matrix, add
a perturbation:

[X,Y,Z] = ndgrid(-2:.5:0,0:.25:2,-10:5);

W = [X(:),Y(:),Z(:)];

W = W + 0.01*randn(size(W));

3 Put the matrix into a CustomStartPointSet object. For example:

custpts = CustomStartPointSet(W);

Call MultiStart run with the CustomStartPointSet object as the third input. For
example,

% Assume problem structure and ms MultiStart object exist

[x fval flag outpt manymins] = run(ms,problem,custpts);

Widely Dispersed Points for Unconstrained Components

Some components of your problem can lack upper or lower bounds. For example:

• Although no explicit bounds exist, there are levels that the components cannot attain.
For example, if one component represents the weight of a single diamond, there is an
implicit upper bound of 1 kg (the Hope Diamond is under 10 g). In such a case, give
the implicit bound as an upper bound.

• There truly is no upper bound. For example, the size of a computer file in bytes has no
effective upper bound. The largest size can be in gigabytes or terabytes today, but in
10 years, who knows?

For truly unbounded components, you can use the following methods of sampling. To
generate approximately 1/n points in each region (exp(n),exp(n+1)), use the following
formula. If u is random and uniformly distributed from 0 through 1, then r = 2u – 1 is
uniformly distributed between –1 and 1. Take
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y r r e= ( ) -( )sgn( ) exp / .1

y is symmetric and random. For a variable bounded below by lb, take

y u e= + ( ) -( )lb exp / .1

Similarly, for a variable bounded above by ub, take

y u e= - ( ) -( )ub exp / .1

For example, suppose you have a three-dimensional problem with

• x(1) > 0
• x(2) < 100
• x(3) unconstrained

To make 150 start points satisfying these constraints:

u = rand(150,3);

r1 = 1./u(:,1);

r1 = exp(r1) - exp(1);

r2 = 1./u(:,2);

r2 = -exp(r2) + exp(1) + 100;

r3 = 1./(2*u(:,3)-1);

r3 = sign(r3).*(exp(abs(r3)) - exp(1));

custpts = CustomStartPointSet([r1,r2,r3]);

The following is a variant of this algorithm. Generate a number between 0 and infinity
by the method for lower bounds. Use this number as the radius of a point. Generate
the other components of the point by taking random numbers for each component and
multiply by the radius. You can normalize the random numbers, before multiplying by
the radius, so their norm is 1. For a worked example of this method, see “MultiStart
Without Bounds, Widely Dispersed Start Points” on page 3-95.

Example: Searching for a Better Solution

MultiStart fails to find the global minimum in “Multiple Local Minima Via MultiStart”
on page 3-76. There are two simple ways to search for a better solution:

• Use more start points
• Give tighter bounds on the search space
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Set up the problem structure and MultiStart object:

problem = createOptimProblem('fminunc',...

    'objective',@(x)sawtoothxy(x(1),x(2)),...

    'x0',[100,-50],'options',...

    optimoptions(@fminunc,'Algorithm','quasi-newton'));

ms = MultiStart;

Use More Start Points

Run MultiStart on the problem for 200 start points instead of 50:

rng(14,'twister') % for reproducibility

[x fval eflag output manymins] = run(ms,problem,200)

MultiStart completed some of the runs from the start points.

51 out of 200 local solver runs converged with a positive local solver exit flag.

x =

   1.0e-06 *

   -0.2284   -0.5567

fval =

   2.1382e-12

eflag =

     2

output = 

                funcCount: 32760

         localSolverTotal: 200

       localSolverSuccess: 51

    localSolverIncomplete: 149

    localSolverNoSolution: 0

                  message: 'MultiStart completed some of the runs from the start poin...'
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manymins = 

  1x51 GlobalOptimSolution

  Properties:

    X

    Fval

    Exitflag

    Output

    X0

This time MultiStart found the global minimum, and found 51 local minima.

To see the range of local solutions, enter histogram([manymins.Fval],10).
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Tighter Bound on the Start Points

Suppose you believe that the interesting local solutions have absolute values of all
components less than 100. The default value of the bound on start points is 1000.
To use a different value of the bound, generate a RandomStartPointSet with the
ArtificialBound property set to 100:

startpts = RandomStartPointSet('ArtificialBound',100,...

    'NumStartPoints',50);

[x fval eflag output manymins] = run(ms,problem,startpts)

MultiStart completed some of the runs from the start points.

27 out of 50 local solver runs converged with a positive local solver exit flag.

x =

   1.0e-08 *

    0.9725   -0.6198

fval =

   1.4955e-15

eflag =

     2

output = 

                funcCount: 7482

         localSolverTotal: 50

       localSolverSuccess: 27

    localSolverIncomplete: 23

    localSolverNoSolution: 0

                  message: 'MultiStart completed some of the runs from the start poin...'

manymins = 

  1x22 GlobalOptimSolution
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  Properties:

    X

    Fval

    Exitflag

    Output

    X0

MultiStart found the global minimum, and found 22 distinct local solutions. To see the
range of local solutions, enter histogram([manymins.Fval],10).

Compared to the minima found in “Use More Start Points” on page 3-61, this run
found better (smaller) minima, and had a higher percentage of successful runs.
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Change Options

In this section...

“How to Determine Which Options to Change” on page 3-65
“Changing Local Solver Options” on page 3-66
“Changing Global Options” on page 3-67

How to Determine Which Options to Change

After you run a global solver, you might want to change some global or local options. To
determine which options to change, the guiding principle is:

• To affect the local solver, set local solver options.
• To affect the start points or solution set, change the problem structure, or set the

global solver object properties.

For example, to obtain:

• More local minima — Set global solver object properties.
• Faster local solver iterations — Set local solver options.
• Different tolerances for considering local solutions identical (to obtain more or fewer

local solutions) — Set global solver object properties.
• Different information displayed at the command line — Decide if you want iterative

display from the local solver (set local solver options) or global information (set global
solver object properties).

• Different bounds, to examine different regions — Set the bounds in the problem
structure.

Examples of Choosing Problem Options

• To start your local solver at points only satisfying inequality constraints, set the
StartPointsToRun property in the global solver object to 'bounds-ineqs'. This
setting can speed your solution, since local solvers do not have to attempt to find
points satisfying these constraints. However, the setting can result in many fewer
local solver runs, since the global solver can reject many start points. For an example,
see “Optimize Using Only Feasible Start Points” on page 3-80.
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• To use the fmincon interior-point algorithm, set the local solver Algorithm
option to 'interior-point'. For an example showing how to do this, see “Examples
of Updating Problem Options” on page 3-66.

• For your local solver to have different bounds, set the bounds in the problem
structure. Examine different regions by setting bounds.

• To see every solution that has positive local exit flag, set the TolX property in the
global solver object to 0. For an example showing how to do this, see “Changing Global
Options” on page 3-67.

Changing Local Solver Options

There are several ways to change values in a local options structure:

• Update the values using dot notation and optimoptions. The syntax is

problem.options = optimoptions(problem.options,'Parameter',value,...);

You can also replace the local options entirely:

problem.options = optimoptions(@solvername,'Parameter',value,...);

• Use dot notation on one local option. The syntax is

problem.options.Parameter = newvalue;

• Recreate the entire problem structure. For details, see “Create Problem Structure” on
page 3-6.

Examples of Updating Problem Options

1 Create a problem structure:

problem = createOptimProblem('fmincon','x0',[-1 2], ...

    'objective',@rosenboth);

2 Set the problem to use the sqp algorithm in fmincon:

problem.options.Algorithm = 'sqp';

3 Update the problem to use the gradient in the objective function, have a TolFun
value of 1e-8, and a TolX value of 1e-7:

problem.options = optimoptions(problem.options,'GradObj','on', ...

    'TolFun',1e-8,'TolX',1e-7);
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Changing Global Options

There are several ways to change characteristics of a GlobalSearch or MultiStart
object:

• Use dot notation. For example, suppose you have a default MultiStart object:

ms = MultiStart

  MultiStart with properties:

         UseParallel: 0

             Display: 'final'

              TolFun: 1.0000e-06

                TolX: 1.0000e-06

             MaxTime: Inf

    StartPointsToRun: 'all'

          OutputFcns: []

            PlotFcns: []

To change ms to have its TolX value equal to 1e-3, update the TolX field:

ms.TolX = 1e-3

  MultiStart with properties:

         UseParallel: 0

             Display: 'final'

              TolFun: 1.0000e-06

                TolX: 1.0000e-03

             MaxTime: Inf

    StartPointsToRun: 'all'

          OutputFcns: []

            PlotFcns: []

• Reconstruct the object starting from the current settings. For example, to set the
TolFun field in ms to 1e-3, retaining the nondefault value for TolX:

ms = MultiStart(ms,'TolFun',1e-3)

  MultiStart with properties:

         UseParallel: 0

             Display: 'final'

              TolFun: 1.0000e-03

                TolX: 1.0000e-03

             MaxTime: Inf

    StartPointsToRun: 'all'
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          OutputFcns: []

            PlotFcns: []

• Convert a GlobalSearch object to a MultiStart object, or vice-versa. For example,
with the ms object from the previous example, create a GlobalSearch object with the
same values of TolX and TolFun:

gs = GlobalSearch(ms)

  GlobalSearch with properties:

             NumTrialPoints: 1000

          BasinRadiusFactor: 0.2000

    DistanceThresholdFactor: 0.7500

               MaxWaitCycle: 20

          NumStageOnePoints: 200

     PenaltyThresholdFactor: 0.2000

                    Display: 'final'

                     TolFun: 1.0000e-03

                       TolX: 1.0000e-03

                    MaxTime: Inf

           StartPointsToRun: 'all'

                 OutputFcns: []

                   PlotFcns: []
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Reproduce Results

In this section...

“Identical Answers with Pseudorandom Numbers” on page 3-69
“Steps to Take in Reproducing Results” on page 3-69
“Example: Reproducing a GlobalSearch or MultiStart Result” on page 3-69
“Parallel Processing and Random Number Streams” on page 3-71

Identical Answers with Pseudorandom Numbers

GlobalSearch and MultiStart use pseudorandom numbers in choosing start points.
Use the same pseudorandom number stream again to:

• Compare various algorithm settings.
• Have an example run repeatably.
• Extend a run, with known initial segment of a previous run.

Both GlobalSearch and MultiStart use the default random number stream.

Steps to Take in Reproducing Results

1 Before running your problem, store the current state of the default random number
stream:

stream = rng;

2 Run your GlobalSearch or MultiStart problem.
3 Restore the state of the random number stream:

rng(stream)

4 If you run your problem again, you get the same result.

Example: Reproducing a GlobalSearch or MultiStart Result

This example shows how to obtain reproducible results for “Find Global or Multiple
Local Minima” on page 3-72. The example follows the procedure in “Steps to Take in
Reproducing Results” on page 3-69.

1 Store the current state of the default random number stream:
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stream = rng;

2 Create the sawtoothxy function file:

function f = sawtoothxy(x,y)

[t r] = cart2pol(x,y); % change to polar coordinates

h = cos(2*t - 1/2)/2 + cos(t) + 2;

g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4) ...

    .*r.^2./(r+1);

f = g.*h;

end

3 Create the problem structure and GlobalSearch object:

problem = createOptimProblem('fmincon',...

    'objective',@(x)sawtoothxy(x(1),x(2)),...

    'x0',[100,-50],'options',...

    optimoptions(@fmincon,'Algorithm','sqp'));

gs = GlobalSearch('Display','iter');

4 Run the problem:
[x fval] = run(gs,problem)

 Num Pts                 Best       Current    Threshold        Local        Local                 

Analyzed  F-count        f(x)       Penalty      Penalty         f(x)     exitflag        Procedure

       0      465       422.9                                   422.9            2    Initial Point

     200     1730  1.547e-015                              1.547e-015            1    Stage 1 Local

     300     1830  1.547e-015     6.01e+004        1.074                             Stage 2 Search

     400     1930  1.547e-015     1.47e+005         4.16                             Stage 2 Search

     500     2030  1.547e-015     2.63e+004        11.84                             Stage 2 Search

     600     2130  1.547e-015    1.341e+004        30.95                             Stage 2 Search

     700     2230  1.547e-015    2.562e+004        65.25                             Stage 2 Search

     800     2330  1.547e-015    5.217e+004        163.8                             Stage 2 Search

     900     2430  1.547e-015    7.704e+004        409.2                             Stage 2 Search

     981     2587  1.547e-015         42.24        516.6        7.573            1    Stage 2 Local

    1000     2606  1.547e-015    3.299e+004        42.24                             Stage 2 Search

GlobalSearch stopped because it analyzed all the trial points.

All 3 local solver runs converged with a positive local solver exit flag.

x =

  1.0e-007 *

    0.0414    0.1298

fval =

  1.5467e-015

You might obtain a different result when running this problem, since the random
stream was in an unknown state at the beginning of the run.

5 Restore the state of the random number stream:

rng(stream)
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6 Run the problem again. You get the same output.
[x fval] = run(gs,problem)

 Num Pts                 Best       Current    Threshold        Local        Local                 

Analyzed  F-count        f(x)       Penalty      Penalty         f(x)     exitflag        Procedure

       0      465       422.9                                   422.9            2    Initial Point

     200     1730  1.547e-015                              1.547e-015            1    Stage 1 Local

... Output deleted to save space ...

x =

  1.0e-007 *

    0.0414    0.1298

fval =

  1.5467e-015

Parallel Processing and Random Number Streams

You obtain reproducible results from MultiStart when you run the algorithm in
parallel the same way as you do for serial computation. Runs are reproducible because
MultiStart generates pseudorandom start points locally, and then distributes the
start points to parallel processors. Therefore, the parallel processors do not use random
numbers.

To reproduce a parallel MultiStart run, use the procedure described in “Steps to Take
in Reproducing Results” on page 3-69. For a description of how to run MultiStart in
parallel, see “How to Use Parallel Processing” on page 9-12.
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Find Global or Multiple Local Minima

In this section...

“Function to Optimize” on page 3-72
“Single Global Minimum Via GlobalSearch” on page 3-74
“Multiple Local Minima Via MultiStart” on page 3-76

Function to Optimize

This example illustrates how GlobalSearch finds a global minimum efficiently, and
how MultiStart finds many more local minima.

The objective function for this example has many local minima and a unique global
minimum. In polar coordinates, the function is
f(r,t) = g(r)h(t),

where
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The global minimum is at r = 0, with objective function 0. The function g(r) grows
approximately linearly in r, with a repeating sawtooth shape. The function h(t) has two
local minima, one of which is global.
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Single Global Minimum Via GlobalSearch

1 Write a function file to compute the objective:

function f = sawtoothxy(x,y)

[t r] = cart2pol(x,y); % change to polar coordinates

h = cos(2*t - 1/2)/2 + cos(t) + 2;

g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4) ...

    .*r.^2./(r+1);

f = g.*h;

end

2 Create the problem structure. Use the 'sqp' algorithm for fmincon:
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problem = createOptimProblem('fmincon',...

    'objective',@(x)sawtoothxy(x(1),x(2)),...

    'x0',[100,-50],'options',...

    optimoptions(@fmincon,'Algorithm','sqp','Display','off'));

The start point is [100,-50] instead of [0,0], so GlobalSearch does not start at
the global solution.

3 Add an artificial bound, and validate the problem structure by running fmincon:

problem.lb = -Inf([2,1]);

[x fval] = fmincon(problem)

x =

   45.6965 -107.6645

fval =

  555.6941

4 Create the GlobalSearch object, and set iterative display:

gs = GlobalSearch('Display','iter');

5 Run the solver:
rng(14,'twister') % for reproducibility

[x fval] = run(gs,problem)

 Num Pts                 Best       Current    Threshold        Local        Local                 

Analyzed  F-count        f(x)       Penalty      Penalty         f(x)     exitflag        Procedure

       0      200       555.7                                   555.7            0    Initial Point

     200     1479   1.547e-15                               1.547e-15            1    Stage 1 Local

     300     1580   1.547e-15     5.858e+04        1.074                              Stage 2 Search

     400     1680   1.547e-15      1.84e+05         4.16                              Stage 2 Search

     500     1780   1.547e-15     2.683e+04        11.84                              Stage 2 Search

     600     1880   1.547e-15     1.122e+04        30.95                              Stage 2 Search

     700     1980   1.547e-15     1.353e+04        65.25                              Stage 2 Search

     800     2080   1.547e-15     6.249e+04        163.8                              Stage 2 Search

     900     2180   1.547e-15     4.119e+04        409.2                              Stage 2 Search

     950     2372   1.547e-15           477        589.7          387            2    Stage 2 Local

     952     2436   1.547e-15         368.4          477        250.7            2    Stage 2 Local

    1000     2484   1.547e-15     4.031e+04        530.9                              Stage 2 Search

GlobalSearch stopped because it analyzed all the trial points.

3 out of 4 local solver runs converged with a positive local solver exit flag.

x =

   1.0e-07 *
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    0.0414    0.1298

fval =

   1.5467e-15

You can get different results, since GlobalSearch is stochastic.

The solver found three local minima, and it found the global minimum near [0,0].

Multiple Local Minima Via MultiStart

1 Write a function file to compute the objective:

function f = sawtoothxy(x,y)

[t r] = cart2pol(x,y); % change to polar coordinates

h = cos(2*t - 1/2)/2 + cos(t) + 2;

g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4) ...

    .*r.^2./(r+1);

f = g.*h;

end

2 Create the problem structure. Use the fminunc solver with the Algorithm option
set to 'quasi-newton'. The reasons for these choices are:

• The problem is unconstrained. Therefore, fminunc is the appropriate solver; see
“Optimization Decision Table” in the Optimization Toolbox documentation.

• The default fminunc algorithm requires a gradient; see “Choosing the Algorithm”
in the Optimization Toolbox documentation. Therefore, set Algorithm to
'quasi-newton'.

problem = createOptimProblem('fminunc',...

    'objective',@(x)sawtoothxy(x(1),x(2)),...

    'x0',[100,-50],'options',...

    optimoptions(@fminunc,'Algorithm','quasi-newton','Display','off'));

3 Validate the problem structure by running it:

[x fval] = fminunc(problem)

x =

    8.4420 -110.2602

fval =

  435.2573

4 Create a default MultiStart object:



 Find Global or Multiple Local Minima

3-77

ms = MultiStart;

5 Run the solver for 50 iterations, recording the local minima:

% rng(1) % uncomment to obtain the same result

[x fval eflag output manymins] = run(ms,problem,50)

MultiStart completed some of the runs from the start points.

10 out of 50 local solver runs converged with a positive local solver exit flag.

x =

  -73.8348 -197.7810

fval =

  766.8260

eflag =

     2

output = 

                funcCount: 8583

         localSolverTotal: 50

       localSolverSuccess: 10

    localSolverIncomplete: 40

    localSolverNoSolution: 0

                  message: 'MultiStart completed some of the runs from the start po...'

manymins = 

  1x10 GlobalOptimSolution array with properties:

    X

    Fval

    Exitflag

    Output

    X0

You can get different results, since MultiStart is stochastic.

The solver did not find the global minimum near [0,0]. It found 10 distinct local
minima.

6 Plot the function values at the local minima:

histogram([manymins.Fval],10)
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Plot the function values at the three best points:

bestf = [manymins.Fval];

histogram(bestf(1:3),10)
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MultiStart started fminunc from start points with components uniformly distributed
between –1000 and 1000. fminunc often got stuck in one of the many local minima.
fminunc exceeded its iteration limit or function evaluation limit 40 times.
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Optimize Using Only Feasible Start Points

You can set the StartPointsToRun option so that MultiStart and GlobalSearch
use only start points that satisfy inequality constraints. This option can speed your
optimization, since the local solver does not have to search for a feasible region. However,
the option can cause the solvers to miss some basins of attraction.

There are three settings for the StartPointsToRun option:

• all — Accepts all start points
• bounds — Rejects start points that do not satisfy bounds
• bounds-ineqs — Rejects start points that do not satisfy bounds or inequality

constraints

For example, suppose your objective function is

function y = tiltcircle(x)

vx = x(:)-[4;4]; % ensure vx is in column form

y = vx'*[1;1] + sqrt(16 - vx'*vx); % complex if norm(x-[4;4])>4

tiltcircle returns complex values for norm(x - [4 4]) > 4.
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Write a constraint function that is positive on the set where norm(x - [4 4]) > 4

function [c ceq] = myconstraint(x)

ceq = [];

cx = x(:) - [4;4]; % ensure x is a column vector

c = cx'*cx - 16; % negative where tiltcircle(x) is real

Set GlobalSearch to use only start points satisfying inequality constraints:

gs = GlobalSearch('StartPointsToRun','bounds-ineqs');

To complete the example, create a problem structure and run the solver:

opts = optimoptions(@fmincon,'Algorithm','interior-point');

problem = createOptimProblem('fmincon',...
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    'x0',[4 4],'objective',@tiltcircle,...

    'nonlcon',@myconstraint,'lb',[-10 -10],...

    'ub',[10 10],'options',opts);

rng(7,'twister'); % for reproducibility

[x,fval,exitflag,output,solutionset] = run(gs,problem)

GlobalSearch stopped because it analyzed all the trial points.

All 5 local solver runs converged with a positive local solver exit flag.

x =

    1.1716    1.1716

fval =

   -5.6530

exitflag =

     1

output = 

                funcCount: 3256

         localSolverTotal: 5

       localSolverSuccess: 5

    localSolverIncomplete: 0

    localSolverNoSolution: 0

                  message: 'GlobalSearch stopped because it analyzed all the trial po...'

solutionset = 

  1x4 GlobalOptimSolution array with properties:

    X

    Fval

    Exitflag

    Output

    X0
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tiltcircle With Local Minima

The tiltcircle function has just one local minimum. Yet GlobalSearch (fmincon)
stops at several points. Does this mean fmincon makes an error?

The reason that fmincon stops at several boundary points is subtle. The tiltcircle
function has an infinite gradient on the boundary, as you can see from a one-dimensional
calculation:
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So there is a huge gradient normal to the boundary. This gradient overwhelms the small
additional tilt from the linear term. As far as fmincon can tell, boundary points are
stationary points for the constrained problem.

This behavior can arise whenever you have a function that has a square root.
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MultiStart Using lsqcurvefit or lsqnonlin

This example shows how to fit a function to data using lsqcurvefit together with
MultiStart.

Many fitting problems have multiple local solutions. MultiStart can help find the
global solution, meaning the best fit. While you can use lsqnonlin as the local solver,
this example uses lsqcurvefit simply because it has a convenient syntax.

The model is

where the input data is , and the parameters , , , and  are the unknown
model coefficients.

Step 1. Create the objective function.

Write an anonymous function that takes a data matrix xdata with N rows and two
columns, and returns a response vector with N rows. It also takes a coefficient matrix p,
corresponding to the coefficient vector .

fitfcn = @(p,xdata)p(1) + p(2)*xdata(:,1).*sin(p(3)*xdata(:,2)+p(4));

Step 2. Create the training data.

Create 200 data points and responses. Use the values .
Include random noise in the response.

rng default % for reproducibility

N = 200; % number of data points

preal = [-3,1/4,1/2,1]; % real coefficients

xdata = 5*rand(N,2); % data points

ydata = fitfcn(preal,xdata) + 0.1*randn(N,1); % response data with noise

Step 3. Set bounds and initial point.

Set bounds for lsqcurvefit. There is no reason for  to exceed  in absolute value,
because the sine function takes values in its full range over any interval of width
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. Assume that the coefficient  must be smaller than 20 in absolute value, because
allowing a very high frequency can cause unstable responses or spurious convergence.

lb = [-Inf,-Inf,-20,-pi];

ub = [Inf,Inf,20,pi];

Set the initial point arbitrarily to (5,5,5,0).

p0 = 5*ones(1,4); % Arbitrary initial point

p0(4) = 0; % so the initial point satisfies the bounds

Step 4. Find the best local fit.

Fit the parameters to the data, starting at p0.

[xfitted,errorfitted] = lsqcurvefit(fitfcn,p0,xdata,ydata,lb,ub)

Local minimum possible.

lsqcurvefit stopped because the final change in the sum of squares relative to 

its initial value is less than the default value of the function tolerance.

xfitted =

   -2.6149   -0.0238    6.0191   -1.6998

errorfitted =

   28.2524

lsqcurvefit found a local solution that is not particularly close to the model parameter
values (-3,1/4,1/2,1).

Step 5. Set up the problem for MultiStart.

Create a problem structure so MultiStart can solve the same problem.

problem = createOptimProblem('lsqcurvefit','x0',p0,'objective',fitfcn,...

    'lb',lb,'ub',ub,'xdata',xdata,'ydata',ydata);
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Step 6. Find a global solution.

Solve the fitting problem using MultiStart with 50 iterations. Plot the smallest error as
the number of MultiStart iterations.

ms = MultiStart('PlotFcns',@gsplotbestf);

[xmulti,errormulti] = run(ms,problem,50)

MultiStart completed the runs from all start points.

All 50 local solver runs converged with a positive local solver exit flag.

xmulti =

   -2.9852   -0.2472   -0.4968   -1.0438

errormulti =

    1.6464
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MultiStart found a global solution near the parameter values .
(This is equivalent to a solution near preal = , because changing the
sign of all the coefficients except the first gives the same numerical values of fitfcn.)
The norm of the residual error decreased from about 28 to about 1.6, a decrease of more
than a factor of 10.
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Parallel MultiStart

In this section...

“Steps for Parallel MultiStart” on page 3-89
“Speedup with Parallel Computing” on page 3-91

Steps for Parallel MultiStart

If you have a multicore processor or access to a processor network, you can use Parallel
Computing Toolbox™ functions with MultiStart. This example shows how to find
multiple minima in parallel for a problem, using a processor with two cores. The problem
is the same as in “Multiple Local Minima Via MultiStart” on page 3-76.

1 Write a function file to compute the objective:

function f = sawtoothxy(x,y)

[t r] = cart2pol(x,y); % change to polar coordinates

h = cos(2*t - 1/2)/2 + cos(t) + 2;

g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4) ...

    .*r.^2./(r+1);

f = g.*h;

end

2 Create the problem structure:

problem = createOptimProblem('fminunc',...

    'objective',@(x)sawtoothxy(x(1),x(2)),...

    'x0',[100,-50],'options',...

    optimoptions(@fminunc,'Algorithm','quasi-newton'));

3 Validate the problem structure by running it:

[x fval] = fminunc(problem)

x =

    8.4420 -110.2602

fval =

  435.2573

4 Create a MultiStart object, and set the object to use parallel processing and
iterative display:

ms = MultiStart('UseParallel',true,'Display','iter');

5 Set up parallel processing:
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parpool

Starting parpool using the 'local' profile ... connected to 4 workers.

ans = 

 Pool with properties: 

            Connected: true

           NumWorkers: 4

              Cluster: local

        AttachedFiles: {}

          IdleTimeout: 30 minute(s) (30 minutes remaining)

          SpmdEnabled: true

6 Run the problem on 50 start points:

[x fval eflag output manymins] = run(ms,problem,50);

Running the local solvers in parallel.

 Run       Local       Local      Local    Local   First-order

Index     exitflag      f(x)     # iter   F-count   optimality

   17         2         3953         4        21        0.1626

   16         0         1331        45       201         65.02

   34         0         7271        54       201         520.9

   33         2         8249         4        18         2.968

     ... Many iterations omitted ... 

   47         2         2740         5        21        0.0422

   35         0         8501        48       201         424.8

   50         0         1225        40       201         21.89

MultiStart completed some of the runs from the start points.

17 out of 50 local solver runs converged with a positive 

local solver exit flag.

Notice that the run indexes look random. Parallel MultiStart runs its start points
in an unpredictable order.

Notice that MultiStart confirms parallel processing in the first line of output,
which states: “Running the local solvers in parallel.”

7 When finished, shut down the parallel environment:

delete(gcp)
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Parallel pool using the 'local' profile is shutting down.

For an example of how to obtain better solutions to this problem, see “Example:
Searching for a Better Solution” on page 3-60. You can use parallel processing along with
the techniques described in that example.

Speedup with Parallel Computing

The results of MultiStart runs are stochastic. The timing of runs is stochastic, too.
Nevertheless, some clear trends are apparent in the following table. The data for the
table came from one run at each number of start points, on a machine with two cores.

Start Points Parallel Seconds Serial Seconds

50 3.6 3.4
100 4.9 5.7
200 8.3 10
500 16 23
1000 31 46

Parallel computing can be slower than serial when you use only a few start points. As the
number of start points increases, parallel computing becomes increasingly more efficient
than serial.

There are many factors that affect speedup (or slowdown) with parallel processing.
For more information, see “Improving Performance with Parallel Computing” in the
Optimization Toolbox documentation.
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Isolated Global Minimum

In this section...

“Difficult-To-Locate Global Minimum” on page 3-92
“Default Settings Cannot Find the Global Minimum — Add Bounds” on page 3-93
“GlobalSearch with Bounds and More Start Points” on page 3-94
“MultiStart with Bounds and Many Start Points” on page 3-95
“MultiStart Without Bounds, Widely Dispersed Start Points” on page 3-95
“MultiStart with a Regular Grid of Start Points” on page 3-96
“MultiStart with Regular Grid and Promising Start Points” on page 3-97

Difficult-To-Locate Global Minimum

Finding a start point in the basin of attraction of the global minimum can be difficult
when the basin is small or when you are unsure of the location of the minimum. To solve
this type of problem you can:

• Add sensible bounds
• Take a huge number of random start points
• Make a methodical grid of start points
• For an unconstrained problem, take widely dispersed random start points

This example shows these methods and some variants.

The function –sech(x) is nearly 0 for all |x| > 5, and –sech(0) = –1. The example is a
two-dimensional version of the sech function, with one minimum at [1,1], the other at
[1e5,-1e5]:
f(x,y) = –10sech(|x – (1,1)|) – 20sech(.0003(|x – (1e5,–1e5)|) – 1.

f has a global minimum of –21 at (1e5,–1e5), and a local minimum of –11 at (1,1).
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The minimum at (1e5,–1e5) shows as a narrow spike. The minimum at (1,1) does not
show since it is too narrow.

The following sections show various methods of searching for the global minimum. Some
of the methods are not successful on this problem. Nevertheless, you might find each
method useful for different problems.

Default Settings Cannot Find the Global Minimum — Add Bounds

GlobalSearch and MultiStart cannot find the global minimum using default global
options, since the default start point components are in the range (–9999,10001) for
GlobalSearch and (–1000,1000) for MultiStart.
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With additional bounds of –1e6 and 1e6 in problem, GlobalSearch usually does not
find the global minimum:

x1 = [1;1];x2 = [1e5;-1e5];

f = @(x)-10*sech(norm(x(:)-x1)) -20*sech((norm(x(:)-x2))*3e-4) -1;

opts = optimoptions(@fmincon,'Algorithm','active-set');

problem = createOptimProblem('fmincon','x0',[0,0],'objective',f,...

    'lb',[-1e6;-1e6],'ub',[1e6;1e6],'options',opts);

gs = GlobalSearch;

rng(14,'twister') % for reproducibility

[xfinal fval] = run(gs,problem)

GlobalSearch stopped because it analyzed all the trial points.

All 32 local solver runs converged with a positive 

local solver exit flag.

xfinal =

    1.0000    1.0000

fval =

  -11.0000

GlobalSearch with Bounds and More Start Points

To find the global minimum, you can search more points. This example uses 1e5 start
points, and a MaxTime of 300 s:

gs.NumTrialPoints = 1e5;

gs.MaxTime = 300;

[xg fvalg] = run(gs,problem)

GlobalSearch stopped because maximum time is exceeded.

GlobalSearch called the local solver 2186 times before exceeding 

the clock time limit (MaxTime = 300 seconds).

1943 local solver runs converged with a positive 

local solver exit flag.

xg =

   1.0e+04 *

   10.0000  -10.0000

fvalg =
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  -21.0000

In this case, GlobalSearch found the global minimum.

MultiStart with Bounds and Many Start Points

Alternatively, you can search using MultiStart with many start points. This example
uses 1e5 start points, and a MaxTime of 300 s:

ms = MultiStart(gs);

[xm fvalm] = run(ms,problem,1e5)

MultiStart stopped because maximum time was exceeded.

MultiStart called the local solver 17266 times before exceeding

the clock time limit (MaxTime = 300 seconds).

17266 local solver runs converged with a positive 

local solver exit flag.

xm =

    1.0000    1.0000

fvalm =

  -11.0000

In this case, MultiStart failed to find the global minimum.

MultiStart Without Bounds, Widely Dispersed Start Points

You can also use MultiStart to search an unbounded region to find the global
minimum. Again, you need many start points to have a good chance of finding the global
minimum.

The first five lines of code generate 10,000 widely dispersed random start points using
the method described in “Widely Dispersed Points for Unconstrained Components”
on page 3-59. newprob is a problem structure using the fminunc local solver and no
bounds:

rng(0,'twister') % for reproducibility

u = rand(1e4,1);

u = 1./u;

u = exp(u) - exp(1);
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s = rand(1e4,1)*2*pi;

stpts = [u.*cos(s),u.*sin(s)];

startpts = CustomStartPointSet(stpts);

opts = optimoptions(@fminunc,'Algorithm','quasi-newton');

newprob = createOptimProblem('fminunc','x0',[0;0],'objective',f,...

    'options',opts);

[xcust fcust] = run(ms,newprob,startpts)

MultiStart completed the runs from all start points.

All 10000 local solver runs converged with a positive

local solver exit flag.

xcust =

   1.0e+05 *

    1.0000

   -1.0000

fcust =

  -21.0000

In this case, MultiStart found the global minimum.

MultiStart with a Regular Grid of Start Points

You can also use a grid of start points instead of random start points. To learn how to
construct a regular grid for more dimensions, or one that has small perturbations, see
“Uniform Grid” on page 3-58 or “Perturbed Grid” on page 3-59.

xx = -1e6:1e4:1e6;

[xxx yyy] = meshgrid(xx,xx);

z = [xxx(:),yyy(:)];

bigstart = CustomStartPointSet(z);

[xgrid fgrid] = run(ms,newprob,bigstart)

MultiStart completed the runs from all start points.

All 10000 local solver runs converged with a positive 

local solver exit flag.

xgrid =

  1.0e+004 *
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   10.0000

  -10.0000

fgrid =

  -21.0000

In this case, MultiStart found the global minimum.

MultiStart with Regular Grid and Promising Start Points

Making a regular grid of start points, especially in high dimensions, can use an
inordinate amount of memory or time. You can filter the start points to run only those
with small objective function value.

To perform this filtering most efficiently, write your objective function in a vectorized
fashion. For information, see “Write a Vectorized Function” on page 2-3 or “Vectorize
the Objective and Constraint Functions” on page 4-80. The following function handle
computes a vector of objectives based on an input matrix whose rows represent start
points:

x1 = [1;1];x2 = [1e5;-1e5];

g = @(x) -10*sech(sqrt((x(:,1)-x1(1)).^2 + (x(:,2)-x1(2)).^2)) ...

     -20*sech(sqrt((x(:,1)-x2(1)).^2 + (x(:,2)-x2(2)).^2))-1;

Suppose you want to run the local solver only for points where the value is less than –2.
Start with a denser grid than in “MultiStart with a Regular Grid of Start Points” on page
3-96, then filter out all the points with high function value:

xx = -1e6:1e3:1e6;

[xxx yyy] = meshgrid(xx,xx);

z = [xxx(:),yyy(:)];

idx = g(z) < -2; % index of promising start points

zz = z(idx,:);

smallstartset = CustomStartPointSet(zz);

opts = optimoptions(@fminunc,'Algorithm','quasi-newton','Display','off');

newprobg = createOptimProblem('fminunc','x0',[0,0],...

    'objective',g,'options',opts); 

    % row vector x0 since g expects rows

[xfew ffew] = run(ms,newprobg,smallstartset)

MultiStart completed the runs from all start points.
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All 2 local solver runs converged with a positive 

local solver exit flag.

xfew =

      100000     -100000

ffew =

   -21

In this case, MultiStart found the global minimum. There are only two start points in
smallstartset, one of which is the global minimum.
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What Is Direct Search?

Direct search is a method for solving optimization problems that does not require
any information about the gradient of the objective function. Unlike more traditional
optimization methods that use information about the gradient or higher derivatives to
search for an optimal point, a direct search algorithm searches a set of points around
the current point, looking for one where the value of the objective function is lower than
the value at the current point. You can use direct search to solve problems for which the
objective function is not differentiable, or is not even continuous.

Global Optimization Toolbox functions include three direct search algorithms called the
generalized pattern search (GPS) algorithm, the generating set search (GSS) algorithm,
and the mesh adaptive search (MADS) algorithm. All are pattern search algorithms that
compute a sequence of points that approach an optimal point. At each step, the algorithm
searches a set of points, called a mesh, around the current point—the point computed at
the previous step of the algorithm. The mesh is formed by adding the current point to a
scalar multiple of a set of vectors called a pattern. If the pattern search algorithm finds a
point in the mesh that improves the objective function at the current point, the new point
becomes the current point at the next step of the algorithm.

The GPS algorithm uses fixed direction vectors. The GSS algorithm is identical to the
GPS algorithm, except when there are linear constraints, and when the current point
is near a linear constraint boundary. The MADS algorithm uses a random selection of
vectors to define the mesh. For details, see “Patterns” on page 4-12.
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Optimize Using Pattern Search

In this section...

“Call patternsearch at the Command Line” on page 4-3
“Pattern Search on Unconstrained Problems” on page 4-3
“Pattern Search on Constrained Problems” on page 4-4
“Additional Output Arguments” on page 4-5
“Use the Optimization App for Pattern Search” on page 4-5

Call patternsearch at the Command Line

To perform a pattern search on an unconstrained problem at the command line, call the
function patternsearch with the syntax

[x fval] = patternsearch(@objfun, x0)

where

• @objfun is a handle to the objective function.
• x0 is the starting point for the pattern search.

The results are:

• x — Point at which the final value is attained
• fval — Final value of the objective function

Pattern Search on Unconstrained Problems

For an unconstrained problem, call patternsearch with the syntax

[x fval] = patternsearch(@objectfun, x0)

The output arguments are

• x — The final point
• fval — The value of the objective function at x
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The required input arguments are

• @objectfun — A function handle to the objective function objectfun, which you
can write as a function file. See “Compute Objective Functions” on page 2-2 to learn
how to do this.

• x0 — The initial point for the pattern search algorithm.

As an example, you can run the example described in “Optimize Using the GPS
Algorithm” on page 4-8 from the command line by entering

[x fval] = patternsearch(@ps_example, [2.1 1.7])

This returns

Optimization terminated: mesh size less than options.TolMesh.

x =

   -4.7124   -0.0000

fval =

   -2.0000

Pattern Search on Constrained Problems

If your problem has constraints, use the syntax

[x fval] = patternsearch(@objfun,x0,A,b,Aeq,beq,lb,ub,nonlcon)

where

• A is a matrix and b is vector that represent inequality constraints of the form A·x ≤ b.
• Aeq is a matrix and beq is a vector that represent equality constraints of the form

Aeq·x = beq.
• lb and ub are vectors representing bound constraints of the form lb ≤ x and x ≤ ub,

respectively.
• nonlcon is a function that returns the nonlinear equality and inequality vectors, c

and ceq, respectively. The function is minimized such that c(x) ≤ 0 and ceq(x) = 0.

You only need to pass in the constraints that are part of the problem. For example, if
there are no bound constraints or a nonlinear constraint function, use the syntax
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[x fval] = patternsearch(@objfun,x0,A,b,Aeq,beq)

Use empty brackets [] for constraint arguments that are not needed for the problem. For
example, if there are no inequality constraints or a nonlinear constraint function, use the
syntax

[x fval] = patternsearch(@objfun,x0,[],[],Aeq,beq,lb,ub)

Additional Output Arguments

To get more information about the performance of the pattern search, you can call
patternsearch with the syntax

[x fval exitflag output] = patternsearch(@objfun,x0)

Besides x and fval, this returns the following additional output arguments:

• exitflag — Integer indicating whether the algorithm was successful
• output — Structure containing information about the performance of the solver

For more information about these arguments, see the patternsearch reference page.

Use the Optimization App for Pattern Search

To open the Optimization app, enter

optimtool('patternsearch')

at the command line, or enter optimtool and then choose patternsearch from the
Solver menu.



4 Using Direct Search

4-6

Choose solver

Set options Expand or contract help

Run solver

View results

See final point

Enter problem
and constraints

You can also start the tool from the MATLAB Apps tab.
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To use the Optimization app, first enter the following information:

• Objective function — The objective function you want to minimize. Enter the
objective function in the form @objfun, where objfun.m is a file that computes the
objective function. The @ sign creates a function handle to objfun.

• Start point — The initial point at which the algorithm starts the optimization.

In the Constraints pane, enter linear constraints, bounds, or a nonlinear constraint
function as a function handle for the problem. If the problem is unconstrained, leave
these fields blank.

Then, click Start. The tool displays the results of the optimization in the Run solver
and view results pane.

In the Options pane, set the options for the pattern search. To view the options in a
category, click the + sign next to it.

“Finding the Minimum of the Function” on page 4-8 gives an example of using the
Optimization app.

For more information, see “Optimization App” in the Optimization Toolbox
documentation.
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Optimize Using the GPS Algorithm

In this section...

“Objective Function” on page 4-8
“Finding the Minimum of the Function” on page 4-8
“Plotting the Objective Function Values and Mesh Sizes” on page 4-10

Objective Function

This example uses the objective function, ps_example, which is included with Global
Optimization Toolbox software. View the code for the function by entering

type ps_example

The following figure shows a plot of the function.

Finding the Minimum of the Function

To find the minimum of ps_example, perform the following steps:
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1 Enter

optimtool

and then choose the patternsearch solver.
2 In the Objective function field of the Optimization app, enter @ps_example.
3 In the Start point field, type [2.1 1.7].

Leave the fields in the Constraints pane blank because the problem is
unconstrained.

4 Click Start to run the pattern search.

The Run solver and view results pane displays the results of the pattern search.

The reason the optimization terminated is that the mesh size became smaller than the
acceptable tolerance value for the mesh size, defined by the Mesh tolerance parameter
in the Stopping criteria pane. The minimum function value is approximately –2. The
Final point pane displays the point at which the minimum occurs.
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Plotting the Objective Function Values and Mesh Sizes

To see the performance of the pattern search, display plots of the best function value and
mesh size at each iteration. First, select the following check boxes in the Plot functions
pane:

• Best function value
• Mesh size

Then click Start to run the pattern search. This displays the following plots.
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The upper plot shows the objective function value of the best point at each iteration.
Typically, the objective function values improve rapidly at the early iterations and then
level off as they approach the optimal value.

The lower plot shows the mesh size at each iteration. The mesh size increases after
each successful iteration and decreases after each unsuccessful one, explained in “How
Pattern Search Polling Works” on page 4-15.
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Pattern Search Terminology

In this section...

“Patterns” on page 4-12
“Meshes” on page 4-13
“Polling” on page 4-14
“Expanding and Contracting” on page 4-14

Patterns

A pattern is a set of vectors {vi} that the pattern search algorithm uses to determine
which points to search at each iteration. The set {vi} is defined by the number of
independent variables in the objective function, N, and the positive basis set. Two
commonly used positive basis sets in pattern search algorithms are the maximal basis,
with 2N vectors, and the minimal basis, with N+1 vectors.

With GPS, the collection of vectors that form the pattern are fixed-direction vectors.
For example, if there are three independent variables in the optimization problem, the
default for a 2N positive basis consists of the following pattern vectors:

v v v

v v v

1 2 3

4 5 6

1 0 0 0 1 0 0 0 1

1 0 0 0 1 0 0 0 1

= = =

= - = - = -

[ ] [ ] [ ]

[ ] [ ] [ ]

An N+1 positive basis consists of the following default pattern vectors.

v v v

v

1 2 3

4

1 0 0 0 1 0 0 0 1

1 1 1

= = =

= - - -

[ ] [ ] [ ]

[ ]

With GSS, the pattern is identical to the GPS pattern, except when there are linear
constraints and the current point is near a constraint boundary. For a description of the
way in which GSS forms a pattern with linear constraints, see Kolda, Lewis, and Torczon
[1]. The GSS algorithm is more efficient than the GPS algorithm when you have linear
constraints. For an example showing the efficiency gain, see “Compare the Efficiency of
Poll Options” on page 4-51.

With MADS, the collection of vectors that form the pattern are randomly selected by the
algorithm. Depending on the poll method choice, the number of vectors selected will be
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2N or N+1. As in GPS, 2N vectors consist of N vectors and their N negatives, while N+1
vectors consist of N vectors and one that is the negative of the sum of the others.

References

[1] Kolda, Tamara G., Robert Michael Lewis, and Virginia Torczon. “A generating
set direct search augmented Lagrangian algorithm for optimization
with a combination of general and linear constraints.” Technical Report
SAND2006-5315, Sandia National Laboratories, August 2006.

Meshes

At each step, patternsearch searches a set of points, called a mesh, for a point that
improves the objective function. patternsearch forms the mesh by

1 Generating a set of vectors {di} by multiplying each pattern vector vi by a scalar Δm.
Δm is called the mesh size.

2 Adding the { }d
i  to the current point—the point with the best objective function value

found at the previous step.

For example, using the GPS algorithm. suppose that:

• The current point is [1.6 3.4].
• The pattern consists of the vectors

v

v

v

v

1

2

3

4

1 0

0 1

1 0

0 1

= [ ]

= [ ]

= -[ ]

= -[ ]

• The current mesh size Δm is 4.

The algorithm multiplies the pattern vectors by 4 and adds them to the current point to
obtain the following mesh.

[1.6 3.4] + 4*[1 0] = [5.6 3.4] 

[1.6 3.4] + 4*[0 1] = [1.6 7.4] 

[1.6 3.4] + 4*[-1 0] = [-2.4 3.4] 
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[1.6 3.4] + 4*[0 -1] = [1.6 -0.6]

The pattern vector that produces a mesh point is called its direction.

Polling

At each step, the algorithm polls the points in the current mesh by computing their
objective function values. When the Complete poll option has the (default) setting Off,
the algorithm stops polling the mesh points as soon as it finds a point whose objective
function value is less than that of the current point. If this occurs, the poll is called
successful and the point it finds becomes the current point at the next iteration.

The algorithm only computes the mesh points and their objective function values up to
the point at which it stops the poll. If the algorithm fails to find a point that improves the
objective function, the poll is called unsuccessful and the current point stays the same at
the next iteration.

When the Complete poll option has the setting On, the algorithm computes the objective
function values at all mesh points. The algorithm then compares the mesh point with the
smallest objective function value to the current point. If that mesh point has a smaller
value than the current point, the poll is successful.

Expanding and Contracting

After polling, the algorithm changes the value of the mesh size Δm. The default is to
multiply Δm by 2 after a successful poll, and by 0.5 after an unsuccessful poll.
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How Pattern Search Polling Works

In this section...

“Context” on page 4-15
“Successful Polls” on page 4-16
“An Unsuccessful Poll” on page 4-19
“Displaying the Results at Each Iteration” on page 4-20
“More Iterations” on page 4-20
“Poll Method” on page 4-21
“Complete Poll” on page 4-23
“Stopping Conditions for the Pattern Search” on page 4-23
“Robustness of Pattern Search” on page 4-25

Context

patternsearch finds a sequence of points, x0, x1, x2, ... , that approach an optimal
point. The value of the objective function either decreases or remains the same from each
point in the sequence to the next. This section explains how pattern search works for the
function described in “Optimize Using the GPS Algorithm” on page 4-8.

To simplify the explanation, this section describes how the generalized pattern search
(GPS) works using a maximal positive basis of 2N, with Scale set to Off in Mesh
options.
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This section does not show how the patternsearch algorithm works with bounds or
linear constraints. For bounds and linear constraints, patternsearch modifies poll
points to be feasible, meaning to satisfy all bounds and linear constraints.

This section does not encompass nonlinear constraints. To understand how
patternsearch works with nonlinear constraints, see “Nonlinear Constraint Solver
Algorithm” on page 4-37.

The problem setup:

Successful Polls

The pattern search begins at the initial point x0 that you provide. In this example,
x0 = [2.1 1.7].

Iteration 1

At the first iteration, the mesh size is 1 and the GPS algorithm adds the pattern vectors
to the initial point x0 = [2.1 1.7] to compute the following mesh points:
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[1 0] + x0 = [3.1 1.7]

[0 1] + x0 = [2.1 2.7]

[-1 0] + x0 = [1.1 1.7]

[0 -1] + x0 = [2.1 0.7]

The algorithm computes the objective function at the mesh points in the order shown
above. The following figure shows the value of ps_example at the initial point and mesh
points.

1 1.5 2 2.5 3 3.5
0.5

1

1.5

2

2.5

3

4.7824.63474.5146

5.6347

3.6347

Objective Function Values at Initial Point and Mesh Points

Initial point x0
Mesh points

First polled point that improves the objective function

The algorithm polls the mesh points by computing their objective function values until it
finds one whose value is smaller than 4.6347, the value at x0. In this case, the first such
point it finds is [1.1 1.7], at which the value of the objective function is 4.5146, so the
poll at iteration 1 is successful. The algorithm sets the next point in the sequence equal to

x1 = [1.1 1.7]

Note By default, the GPS pattern search algorithm stops the current iteration as soon
as it finds a mesh point whose fitness value is smaller than that of the current point.
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Consequently, the algorithm might not poll all the mesh points. You can make the
algorithm poll all the mesh points by setting Complete poll to On.

Iteration 2

After a successful poll, the algorithm multiplies the current mesh size by 2, the default
value of Expansion factor in the Mesh options pane. Because the initial mesh size is 1,
at the second iteration the mesh size is 2. The mesh at iteration 2 contains the following
points:

2*[1 0] + x1 = [3.1 1.7]

2*[0 1] + x1 = [1.1 3.7]

2*[-1 0] + x1 = [-0.9 1.7]

2*[0 -1] + x1 = [1.1 -0.3]

The following figure shows the point x1 and the mesh points, together with the
corresponding values of ps_example.

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5146 4.72823.25

6.5416

3.1146

Objective Function Values at x1 and Mesh Points

x1
Mesh points

The algorithm polls the mesh points until it finds one whose value is smaller than
4.5146, the value at x1. The first such point it finds is [-0.9 1.7], at which the value of
the objective function is 3.25, so the poll at iteration 2 is again successful. The algorithm
sets the second point in the sequence equal to
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x2 = [-0.9 1.7]

Because the poll is successful, the algorithm multiplies the current mesh size by 2 to get
a mesh size of 4 at the third iteration.

An Unsuccessful Poll

By the fourth iteration, the current point is

x3 = [-4.9 1.7]

and the mesh size is 8, so the mesh consists of the points

8*[1 0] + x3 = [3.1 1.7]

8*[0 1] + x3 = [-4.9 9.7]

8*[-1 0] + x3 = [-12.9 1.7]

8*[0 -1] + x3 = [-4.9 -1.3]

The following figure shows the mesh points and their objective function values.
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7.7351

4.3351

Objective Function Values at x3 and Mesh Points

x3
Mesh points

At this iteration, none of the mesh points has a smaller objective function value than the
value at x3, so the poll is unsuccessful. In this case, the algorithm does not change the
current point at the next iteration. That is,
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x4 = x3;

At the next iteration, the algorithm multiplies the current mesh size by 0.5, the default
value of Contraction factor in the Mesh options pane, so that the mesh size at the next
iteration is 4. The algorithm then polls with a smaller mesh size.

Displaying the Results at Each Iteration

You can display the results of the pattern search at each iteration by setting Level of
display to Iterative in the Display to command window options. This enables
you to evaluate the progress of the pattern search and to make changes to options if
necessary.

With this setting, the pattern search displays information about each iteration at the
command line. The first four iterations are

Iter     f-count          f(x)      MeshSize     Method

    0        1        4.63474             1      

    1        4        4.51464             2     Successful Poll

    2        7           3.25             4     Successful Poll

    3       10      -0.264905             8     Successful Poll

    4       14      -0.264905             4     Refine Mesh

The entry Successful Poll below Method indicates that the current iteration was
successful. For example, the poll at iteration 2 is successful. As a result, the objective
function value of the point computed at iteration 2, displayed below f(x), is less than the
value at iteration 1.

At iteration 4, the entry Refine Mesh tells you that the poll is unsuccessful. As a result,
the function value at iteration 4 remains unchanged from iteration 3.

By default, the pattern search doubles the mesh size after each successful poll and halves
it after each unsuccessful poll.

More Iterations

The pattern search performs 60 iterations before stopping. The following plot shows the
points in the sequence computed in the first 13 iterations of the pattern search.
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The numbers below the points indicate the first iteration at which the algorithm finds
the point. The plot only shows iteration numbers corresponding to successful polls,
because the best point doesn't change after an unsuccessful poll. For example, the best
point at iterations 4 and 5 is the same as at iteration 3.

Poll Method

At each iteration, the pattern search polls the points in the current mesh—that is, it
computes the objective function at the mesh points to see if there is one whose function
value is less than the function value at the current point. “How Pattern Search Polling
Works” on page 4-15 provides an example of polling. You can specify the pattern
that defines the mesh by the Poll method option. The default pattern, GPS Positive
basis 2N, consists of the following 2N directions, where N is the number of independent
variables for the objective function.
[1 0 0...0]
[0 1 0...0]
...
[0 0 0...1]
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[–1 0 0...0]
[0 –1 0...0]
[0 0 0...–1].

For example, if the objective function has three independent variables, the GPS
Positive basis 2N, consists of the following six vectors.
[1 0 0]
[0 1 0]
[0 0 1]
[–1 0 0]
[0 –1 0]
[0 0 –1].

Alternatively, you can set Poll method to GPS Positive basis NP1, the pattern
consisting of the following N + 1 directions.
[1 0 0...0]
[0 1 0...0]
...
[0 0 0...1]
[–1 –1 –1...–1].

For example, if objective function has three independent variables, the GPS Positive
basis Np1, consists of the following four vectors.
[1 0 0]
[0 1 0]
[0 0 1]
[–1 –1 –1].

A pattern search will sometimes run faster using GPS Positive basis Np1 rather
than the GPS Positive basis 2N as the Poll method, because the algorithm
searches fewer points at each iteration. Although not being addressed in this example,
the same is true when using the MADS Positive basis Np1 over the MADS Positive
basis 2N, and similarly for GSS. For example, if you run a pattern search on the
example described in “Linearly Constrained Problem” on page 4-69, the algorithm
performs 1588 function evaluations with GPS Positive basis 2N, the default Poll
method, but only 877 function evaluations using GPS Positive basis Np1. For more
detail, see “Compare the Efficiency of Poll Options” on page 4-51.

However, if the objective function has many local minima, using GPS Positive basis
2N as the Poll method might avoid finding a local minimum that is not the global
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minimum, because the search explores more points around the current point at each
iteration.

Complete Poll

By default, if the pattern search finds a mesh point that improves the value of the
objective function, it stops the poll and sets that point as the current point for the next
iteration. When this occurs, some mesh points might not get polled. Some of these
unpolled points might have an objective function value that is even lower than the first
one the pattern search finds.

For problems in which there are several local minima, it is sometimes preferable to make
the pattern search poll all the mesh points at each iteration and choose the one with
the best objective function value. This enables the pattern search to explore more points
at each iteration and thereby potentially avoid a local minimum that is not the global
minimum. In the Optimization app you can make the pattern search poll the entire mesh
setting Complete poll to On in Poll options. At the command line, use psoptimset to
set the CompletePoll option to 'on'.

Stopping Conditions for the Pattern Search

The criteria for stopping the pattern search algorithm are listed in the Stopping
criteria section of the Optimization app:
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The algorithm stops when any of the following conditions occurs:

• The mesh size is less than Mesh tolerance.
• The number of iterations performed by the algorithm reaches the value of Max

iteration.
• The total number of objective function evaluations performed by the algorithm

reaches the value of Max function evaluations.
• The time, in seconds, the algorithm runs until it reaches the value of Time limit.
• The distance between the point found in two consecutive iterations and the mesh size

are both less than X tolerance.
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• The change in the objective function in two consecutive iterations is less than
Function tolerance and the mesh size is less than X tolerance.

Nonlinear constraint tolerance is not used as stopping criterion. It determines the
feasibility with respect to nonlinear constraints.

The MADS algorithm uses an additional parameter called the poll parameter, Δp, in the
mesh size stopping criterion:
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where Δm is the mesh size. The MADS stopping criterion is:
Δp ≤ Mesh tolerance.

Robustness of Pattern Search

The pattern search algorithm is robust in relation to objective function failures. This
means patternsearch tolerates function evaluations resulting in NaN, Inf, or
complex values. When the objective function at the initial point x0 is a real, finite value,
patternsearch treats poll point failures as if the objective function values are large,
and ignores them.

For example, if all points in a poll evaluate to NaN, patternsearch considers the poll
unsuccessful, shrinks the mesh, and reevaluates. If even one point in a poll evaluates to
a smaller value than any seen yet, patternsearch considers the poll successful, and
expands the mesh.
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Searching and Polling

In this section...

“Definition of Search” on page 4-26
“How to Use a Search Method” on page 4-28
“Search Types” on page 4-29
“When to Use Search” on page 4-29

Definition of Search

In patternsearch, a search is an algorithm that runs before a poll. The search attempts
to locate a better point than the current point. (Better means one with lower objective
function value.) If the search finds a better point, the better point becomes the current
point, and no polling is done at that iteration. If the search does not find a better point,
patternsearch performs a poll.

By default, patternsearch does not use search. To search, see “How to Use a Search
Method” on page 4-28.

The figure patternsearch With a Search Method contains a flow chart of direct search
including using a search method.
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Iteration limit applies to all built-in search methods except those that are poll methods.
If you select an iteration limit for the search method, the search is enabled until the
iteration limit is reached. Afterwards, patternsearch stops searching and only polls.

How to Use a Search Method

To use search in patternsearch:

• In Optimization app, choose a Search method in the Search pane.

• At the command line, create an options structure with a search method using
psoptimset. For example, to use Latin hypercube search:

opts = psoptimset('SearchMethod',@searchlhs);

For more information, including a list of all built-in search methods, consult the
psoptimset function reference page, and the “Search Options” on page 10-13
section of the options reference.

You can write your own search method. Use the syntax described in “Structure of the
Search Function” on page 10-16. To use your search method in a pattern search, give
its function handle as the Custom Function (SearchMethod) option.
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Search Types

• Poll methods — You can use any poll method as a search algorithm. patternsearch
conducts one poll step as a search. For this type of search to be beneficial, your search
type should be different from your poll type. (patternsearch does not search if the
selected search method is the same as the poll type.) Therefore, use a MADS search
with a GSS or GPS poll, or use a GSS or GPS search with a MADS poll.

• fminsearch, also called Nelder-Mead — fminsearch is for unconstrained problems
only. fminsearch runs to its natural stopping criteria; it does not take just one step.
Therefore, use fminsearch for just one iteration. This is the default setting. To
change settings, see “Search Options” on page 10-13.

• ga — ga runs to its natural stopping criteria; it does not take just one step. Therefore,
use ga for just one iteration. This is the default setting. To change settings, see
“Search Options” on page 10-13.

• Latin hypercube search — Described in “Search Options” on page 10-13. By
default, searches 15n points, where n is the number of variables, and only searches
during the first iteration. To change settings, see “Search Options” on page 10-13.

When to Use Search

There are two main reasons to use a search method:

• To speed an optimization (see “Search Methods for Increased Speed” on page 4-29)
• To obtain a better local solution, or to obtain a global solution (see “Search Methods

for Better Solutions” on page 4-30)

Search Methods for Increased Speed

Generally, you do not know beforehand whether a search method speeds an optimization
or not. So try a search method when:

• You are performing repeated optimizations on similar problems, or on the same
problem with different parameters.

• You can experiment with different search methods to find a lower solution time.

Search does not always speed an optimization. For one example where it does, see
“Search and Poll” on page 4-32.
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Search Methods for Better Solutions

Since search methods run before poll methods, using search can be equivalent to choosing
a different starting point for your optimization. This comment holds for the Nelder-
Mead, ga, and Latin hypercube search methods, all of which, by default, run once at the
beginning of an optimization. ga and Latin hypercube searches are stochastic, and can
search through several basins of attraction.
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Setting Solver Tolerances

Tolerance refers to how small a parameter, such a mesh size, can become before the
search is halted or changed in some way. You can specify the value of the following
tolerances using psoptimset or the Optimization app:

• Mesh tolerance — When the current mesh size is less than the value of Mesh
tolerance, the algorithm halts.

• X tolerance — After a successful poll, if the distance from the previous best point to
the current best point is less than the value of X tolerance, the algorithm halts.

• Function tolerance — After a successful poll, if the difference between the function
value at the previous best point and function value at the current best point is less
than the value of Function tolerance, the algorithm halts.

• Nonlinear constraint tolerance — The algorithm treats a point to be feasible if
constraint violation is less than TolCon.

• Bind tolerance — Bind tolerance applies to linearly constrained problems. It
specifies how close a point must get to the boundary of the feasible region before a
linear constraint is considered to be active. When a linear constraint is active, the
pattern search polls points in directions parallel to the linear constraint boundary as
well as the mesh points.

Usually, you should set Bind tolerance to be at least as large as the maximum of
Mesh tolerance, X tolerance, and Function tolerance.
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Search and Poll

In this section...

“Using a Search Method” on page 4-32
“Search Using a Different Solver” on page 4-35

Using a Search Method

In addition to polling the mesh points, the pattern search algorithm can perform an
optional step at every iteration, called search. At each iteration, the search step applies
another optimization method to the current point. If this search does not improve the
current point, the poll step is performed.

The following example illustrates the use of a search method on the problem described
in “Linearly Constrained Problem” on page 4-69. To set up the example, enter the
following commands at the MATLAB prompt to define the initial point and constraints.

x0 = [2 1 0 9 1 0];

Aineq = [-8 7 3 -4 9 0];

bineq = 7;

Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];

beq = [84 62 65 1];

Then enter the settings shown in the following figures in the Optimization app.
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For comparison, click Start to run the example without a search method. This displays
the plots shown in the following figure.
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To see the effect of using a search method, select MADS Positive Basis 2N in the
Search method field in Search options.

This sets the search method to be a pattern search using the pattern for MADS Positive
Basis 2N. Then click Start to run the pattern search. This displays the following plots.
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Note that using the search method reduces the total function evaluations—from 1206 to
1159—and reduces the number of iterations from 106 to 97.

Search Using a Different Solver

patternsearch takes a long time to minimize Rosenbrock's function. The function is

f x x x x( ) .= -( ) + -( )100 12 1
2

2

1
2

Rosenbrock's function is described and plotted in “Solve a Constrained Nonlinear
Problem” in the Optimization Toolbox documentation. The dejong2fcn.m file, which in
included in the toolbox, calculates this function.
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1 Set patternsearch options to MaxFunEvals = 5000 and MaxIter = 2000:

opts = psoptimset('MaxFunEvals',5000,'MaxIter',2000);

2 Run patternsearch starting from [-1.9 2]:

[x feval eflag output] = patternsearch(@dejong2fcn,...

    [-1.9,2],[],[],[],[],[],[],[],opts);

Maximum number of function evaluations exceeded: 

increase options.MaxFunEvals.

feval

feval =

    0.8560

The optimization did not complete, and the result is not very close to the optimal
value of 0.

3 Set the options to use fminsearch as the search method:

opts = psoptimset(opts,'SearchMethod',@searchneldermead);

4 Rerun the optimization, the results are much better:

[x2 feval2 eflag2 output2] = patternsearch(@dejong2fcn,...

    [-1.9,2],[],[],[],[],[],[],[],opts);

Optimization terminated: mesh size less than options.TolMesh.

feval2

feval2 =

  4.0686e-010

fminsearch is not as closely tied to coordinate directions as the default GPS
patternsearch poll method. Therefore, fminsearch is more efficient at getting close to
the minimum of Rosenbrock's function. Adding the search method in this case is effective.



 Nonlinear Constraint Solver Algorithm

4-37

Nonlinear Constraint Solver Algorithm

The pattern search algorithm uses the Augmented Lagrangian Pattern Search (ALPS)
algorithm to solve nonlinear constraint problems. The optimization problem solved by the
ALPS algorithm is

min ( )
x

f x

such that
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where c(x) represents the nonlinear inequality constraints, ceq(x) represents the equality
constraints, m is the number of nonlinear inequality constraints, and mt is the total
number of nonlinear constraints.

The ALPS algorithm attempts to solve a nonlinear optimization problem with nonlinear
constraints, linear constraints, and bounds. In this approach, bounds and linear
constraints are handled separately from nonlinear constraints. A subproblem is
formulated by combining the objective function and nonlinear constraint function using
the Lagrangian and the penalty parameters. A sequence of such optimization problems
are approximately minimized using a pattern search algorithm such that the linear
constraints and bounds are satisfied.

Each subproblem solution represents one iteration. The number of function evaluations
per iteration is therefore much higher when using nonlinear constraints than otherwise.

A subproblem formulation is defined as
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• The components λi of the vector λ are nonnegative and are known as Lagrange
multiplier estimates

• The elements si of the vector s are nonnegative shifts
• ρ is the positive penalty parameter.

The algorithm begins by using an initial value for the penalty parameter
(InitialPenalty).

The pattern search minimizes a sequence of subproblems, each of which is an
approximation of the original problem. Each subproblem has a fixed value of λ, s, and
ρ. When the subproblem is minimized to a required accuracy and satisfies feasibility
conditions, the Lagrangian estimates are updated. Otherwise, the penalty parameter
is increased by a penalty factor (PenaltyFactor). This results in a new subproblem
formulation and minimization problem. These steps are repeated until the stopping
criteria are met.

Each subproblem solution represents one iteration. The number of function evaluations
per iteration is therefore much higher when using nonlinear constraints than otherwise.

For a complete description of the algorithm, see the following references:

References

[1] Kolda, Tamara G., Robert Michael Lewis, and Virginia Torczon. “A generating
set direct search augmented Lagrangian algorithm for optimization
with a combination of general and linear constraints.” Technical Report
SAND2006-5315, Sandia National Laboratories, August 2006.

[2] Conn, A. R., N. I. M. Gould, and Ph. L. Toint. “A Globally Convergent Augmented
Lagrangian Algorithm for Optimization with General Constraints and Simple
Bounds,” SIAM Journal on Numerical Analysis, Volume 28, Number 2, pages
545–572, 1991.

[3] Conn, A. R., N. I. M. Gould, and Ph. L. Toint. “A Globally Convergent Augmented
Lagrangian Barrier Algorithm for Optimization with General Inequality
Constraints and Simple Bounds,” Mathematics of Computation, Volume 66,
Number 217, pages 261–288, 1997.



 Custom Plot Function

4-39

Custom Plot Function

In this section...

“About Custom Plot Functions” on page 4-39
“Creating the Custom Plot Function” on page 4-39
“Setting Up the Problem” on page 4-40
“Using the Custom Plot Function” on page 4-41
“How the Plot Function Works” on page 4-42

About Custom Plot Functions

To use a plot function other than those included with the software, you can write your
own custom plot function that is called at each iteration of the pattern search to create
the plot. This example shows how to create a plot function that displays the logarithmic
change in the best objective function value from the previous iteration to the current
iteration. More plot function details are available in “Plot Options” on page 10-29.

Creating the Custom Plot Function

To create the plot function for this example, copy and paste the following code into a new
function file in the MATLAB Editor:
function stop = psplotchange(optimvalues, flag)

% PSPLOTCHANGE Plots the change in the best objective function 

% value from the previous iteration.

  

% Best objective function value in the previous iteration

persistent last_best

 

stop = false;

if(strcmp(flag,'init')) 

        set(gca,'Yscale','log'); %Set up the plot

        hold on;

        xlabel('Iteration'); 

        ylabel('Log Change in Values');

        title(['Change in Best Function Value']);

end

 

% Best objective function value in the current iteration

best = min(optimvalues.fval);  

 

 % Set last_best to best

if optimvalues.iteration == 0

last_best = best;
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else

        %Change in objective function value

    change = last_best - best; 

        plot(optimvalues.iteration, change, '.r');

end

Then save the file as psplotchange.m in a folder on the MATLAB path.

Setting Up the Problem

The problem is the same as “Linearly Constrained Problem” on page 4-69. To set up
the problem:

1 Enter the following at the MATLAB command line:

x0 = [2 1 0 9 1 0];

Aineq = [-8 7 3 -4 9 0];

bineq = 7;

Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];

beq = [84 62 65 1];

2 Enter optimtool to open the Optimization app.
3 Choose the patternsearch solver.
4 Set up the problem to match the following figure.
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5 Since this is a linearly constrained problem, set the Poll method to GSS Positive
basis 2N.

Using the Custom Plot Function

To use the custom plot function, select Custom function in the Plot functions pane
and enter @psplotchange in the field to the right. To compare the custom plot with the
best function value plot, also select Best function value.

Now, when you run the example, the pattern search tool displays the plots shown in the
following figure.
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Note that because the scale of the y-axis in the lower custom plot is logarithmic, the plot
will only show changes that are greater than 0.

How the Plot Function Works

The plot function uses information contained in the following structures, which the
Optimization app passes to the function as input arguments:

• optimvalues — Structure containing the current state of the solver
• flag — String indicating the current status of the algorithm

The most important statements of the custom plot function, psplotchange.m, are
summarized in the following table.
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Custom Plot Function Statements

Statement Description

persistent last_best Creates the persistent variable
last_best, the best objective function
value in the previous generation. Persistent
variables are preserved over multiple calls
to the plot function.

set(gca,'Yscale','log') Sets up the plot before the algorithm starts.
best = min(optimvalues.fval) Sets best equal to the minimum

objective function value. The field
optimvalues.fval contains the objective
function value in the current iteration. The
variable best is the minimum objective
function value. For a complete description
of the fields of the structure optimvalues,
see “Structure of the Plot Functions” on
page 10-11.

change = last_best - best Sets the variable change to the best
objective function value at the previous
iteration minus the best objective function
value in the current iteration.

plot(optimvalues.iteration,

change, '.r')

Plots the variable change at the
current objective function value,
for the current iteration contained
inoptimvalues.iteration.



4 Using Direct Search

4-44

Set Options

In this section...

“Set Options Using psoptimset” on page 4-44
“Create Options and Problems Using the Optimization App” on page 4-46

Set Options Using psoptimset

You can specify any available patternsearch options by passing an options structure
as an input argument to patternsearch using the syntax

[x fval] = patternsearch(@fitnessfun,nvars, ... 

            A,b,Aeq,beq,lb,ub,nonlcon,options)

Pass in empty brackets [] for any constraints that do not appear in the problem.

You create the options structure using the function psoptimset.

options = psoptimset(@patternsearch)

This returns the options structure with the default values for its fields.

options = 

            TolMesh: 1.0000e-06

             TolCon: 1.0000e-06

               TolX: 1.0000e-06

             TolFun: 1.0000e-06

            TolBind: 1.0000e-03

            MaxIter: '100*numberofvariables'

        MaxFunEvals: '2000*numberofvariables'

          TimeLimit: Inf

    MeshContraction: 0.5000

      MeshExpansion: 2

    MeshAccelerator: 'off'

         MeshRotate: 'on'

    InitialMeshSize: 1

          ScaleMesh: 'on'

        MaxMeshSize: Inf

     InitialPenalty: 10

      PenaltyFactor: 100

         PollMethod: 'gpspositivebasis2n'

       CompletePoll: 'off'
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       PollingOrder: 'consecutive'

       SearchMethod: []

     CompleteSearch: 'off'

            Display: 'final'

         OutputFcns: []

           PlotFcns: []

       PlotInterval: 1

              Cache: 'off'

          CacheSize: 10000

           CacheTol: 2.2204e-16

         Vectorized: 'off'

        UseParallel: 0

The patternsearch function uses these default values if you do not pass in options as
an input argument.

The value of each option is stored in a field of the options structure, such as
options.MeshExpansion. You can display any of these values by entering options
followed by the name of the field. For example, to display the mesh expansion factor for
the pattern search, enter

options.MeshExpansion

ans =

    2

To create an options structure with a field value that is different from the default,
use psoptimset. For example, to change the mesh expansion factor to 3 instead of its
default value 2, enter

options = psoptimset('MeshExpansion',3);

This creates the options structure with all values set to empty except for
MeshExpansion, which is set to 3. (An empty field causes patternsearch to use the
default value.)

If you now call patternsearch with the argument options, the pattern search uses a
mesh expansion factor of 3.

If you subsequently decide to change another field in the options structure, such as
setting PlotFcns to @psplotmeshsize, which plots the mesh size at each iteration, call
psoptimset with the syntax

options = psoptimset(options, 'PlotFcns', @psplotmeshsize)
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This preserves the current values of all fields of options except for PlotFcns, which
is changed to @plotmeshsize. Note that if you omit the options input argument,
psoptimset resets MeshExpansion to its default value, which is 2.

You can also set both MeshExpansion and PlotFcns with the single command

options = psoptimset('MeshExpansion',3,'PlotFcns',@plotmeshsize)

Create Options and Problems Using the Optimization App

As an alternative to creating the options structure using psoptimset, you can set the
values of options in the Optimization app and then export the options to a structure
in the MATLAB workspace, as described in the “Importing and Exporting Your Work”
section of the Optimization Toolbox documentation. If you export the default options
in the Optimization app, the resulting options structure has the same settings as the
default structure returned by the command

options = psoptimset

except for the default value of 'Display', which is 'final' when created by
psoptimset, but 'none' when created in the Optimization app.

You can also export an entire problem from the Optimization app and run it from the
command line. Enter

patternsearch(problem)

where problem is the name of the exported problem.
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Polling Types

In this section...

“Using a Complete Poll in a Generalized Pattern Search” on page 4-47
“Compare the Efficiency of Poll Options” on page 4-51

Using a Complete Poll in a Generalized Pattern Search

As an example, consider the following function.
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The following figure shows a plot of the function.
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The global minimum of the function occurs at (0, 0), where its value is -25. However, the
function also has a local minimum at (0, 9), where its value is -16.

To create a file that computes the function, copy and paste the following code into a new
file in the MATLAB Editor.

function z = poll_example(x)

if x(1)^2 + x(2)^2 <= 25

    z = x(1)^2 + x(2)^2 - 25;

elseif x(1)^2 + (x(2) - 9)^2 <= 16

    z = x(1)^2 + (x(2) - 9)^2 - 16;

else z = 0;

end

Then save the file as poll_example.m in a folder on the MATLAB path.

To run a pattern search on the function, enter the following in the Optimization app:
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• Set Solver to patternsearch.
• Set Objective function to @poll_example.
• Set Start point to [0 5].
• Set Level of display to Iterative in the Display to command window options.

Click Start to run the pattern search with Complete poll set to Off, its default value.
The Optimization app displays the results in the Run solver and view results pane, as
shown in the following figure.

The pattern search returns the local minimum at (0, 9). At the initial point, (0, 5), the
objective function value is 0. At the first iteration, the search polls the following mesh
points.
f((0, 5) + (1, 0)) = f(1, 5) = 0
f((0, 5) + (0, 1)) = f(0, 6) = -7

As soon as the search polls the mesh point (0, 6), at which the objective function value
is less than at the initial point, it stops polling the current mesh and sets the current
point at the next iteration to (0, 6). Consequently, the search moves toward the local
minimum at (0, 9) at the first iteration. You see this by looking at the first two lines of
the command line display.

Iter     f-count     f(x)      MeshSize     Method

    0        1         0             1      

    1        3        -7             2     Successful Poll
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Note that the pattern search performs only two evaluations of the objective function at
the first iteration, increasing the total function count from 1 to 3.

Next, set Complete poll to On and click Start. The Run solver and view results pane
displays the following results.

This time, the pattern search finds the global minimum at (0, 0). The difference between
this run and the previous one is that with Complete poll set to On, at the first iteration
the pattern search polls all four mesh points.
f((0, 5) + (1, 0)) = f(1, 5) = 0
f((0, 5) + (0, 1)) = f(0, 6) = -6
f((0, 5) + (-1, 0)) = f(-1, 5) = 0
f((0, 5) + (0, -1)) = f(0, 4) = -9

Because the last mesh point has the lowest objective function value, the pattern search
selects it as the current point at the next iteration. The first two lines of the command-
line display show this.

Iter     f-count     f(x)      MeshSize     Method

    0        1         0             1      

    1        5        -9             2     Successful Poll

In this case, the objective function is evaluated four times at the first iteration. As a
result, the pattern search moves toward the global minimum at (0, 0).
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The following figure compares the sequence of points returned when Complete poll is
set to Off with the sequence when Complete poll is On.
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Compare the Efficiency of Poll Options

This example shows how several poll options interact in terms of iterations and total
function evaluations. The main results are:

• GSS is more efficient than GPS or MADS for linearly constrained problems.
• Whether setting CompletePoll to 'on' increases efficiency or decreases efficiency is

unclear, although it affects the number of iterations.
• Similarly, whether having a 2N poll is more or less efficient than having an Np1 poll

is also unclear. The most efficient poll is GSS Positive Basis Np1 with Complete
poll set to on. The least efficient is MADS Positive Basis Np1 with Complete
poll set to on.
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Note: The efficiency of an algorithm depends on the problem. GSS is efficient for linearly
constrained problems. However, predicting the efficiency implications of the other poll
options is difficult, as is knowing which poll type works best with other constraints.

Problem setup

The problem is the same as in “Performing a Pattern Search on the Example” on page
4-70. This linearly constrained problem uses the lincontest7 file that comes with
the toolbox:

1 Enter the following into your MATLAB workspace:

x0 = [2 1 0 9 1 0];

Aineq = [-8 7 3 -4 9 0];

bineq = 7;

Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];

beq = [84 62 65 1];

2 Open the Optimization app by entering optimtool at the command line.
3 Choose the patternsearch solver.
4 Enter the problem and constraints as pictured.

5 Ensure that the Poll method is GPS Positive basis 2N.
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Generate the Results

1 Run the optimization.

2 Choose File > Export to Workspace.

3 Export the results to a structure named gps2noff.
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4 Set Options > Poll > Complete poll to on.

5 Run the optimization.
6 Export the result to a structure named gps2non.
7 Set Options > Poll > Poll method to GPS Positive basis Np1 and set

Complete poll to off.
8 Run the optimization.
9 Export the result to a structure named gpsnp1off.
10 Set Complete poll to on.
11 Run the optimization.
12 Export the result to a structure named gpsnp1on.
13 Continue in a like manner to create solution structures for the other poll methods

with Complete poll set on and off: gss2noff, gss2non, gssnp1off, gssnp1on,
mads2noff, mads2non, madsnp1off, and madsnp1on.
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Examine the Results

You have the results of 12 optimization runs. The following table shows the efficiency of
the runs, measured in total function counts and in iterations. Your MADS results could
differ, since MADS is a stochastic algorithm.

Algorithm Function Count Iterations

GPS2N, complete poll off 1462 136
GPS2N, complete poll on 1396 96
GPSNp1, complete poll off 864 118
GPSNp1, complete poll on 1007 104
GSS2N, complete poll off 758 84
GSS2N, complete poll on 889 74
GSSNp1, complete poll off 533 94
GSSNp1, complete poll on 491 70
MADS2N, complete poll off 922 162
MADS2N, complete poll on 2285 273
MADSNp1, complete poll off 1155 201
MADSNp1, complete poll on 1651 201

To obtain, say, the first row in the table, enter gps2noff.output.funccount and
gps2noff.output.iterations. You can also examine a structure in the Variables
editor by double-clicking the structure in the Workspace Browser, and then double-
clicking the output structure.
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The main results gleaned from the table are:

• Setting Complete poll to on generally lowers the number of iterations for GPS and
GSS, but the change in number of function evaluations is unpredictable.

• Setting Complete poll to on does not necessarily change the number of iterations for
MADS, but substantially increases the number of function evaluations.

• The most efficient algorithm/options settings, with efficiency meaning lowest function
count:

1 GSS Positive basis Np1 with Complete poll set to on (function count 491)
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2 GSS Positive basis Np1 with Complete poll set to off (function count 533)
3 GSS Positive basis 2N with Complete poll set to off (function count 758)
4 GSS Positive basis 2N with Complete poll set to on (function count 889)

The other poll methods had function counts exceeding 900.
• For this problem, the most efficient poll is GSS Positive Basis Np1 with

Complete poll set to on, although the Complete poll setting makes only a small
difference. The least efficient poll is MADS Positive Basis 2N with Complete poll
set to on. In this case, the Complete poll setting makes a substantial difference.
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Set Mesh Options

In this section...

“Mesh Expansion and Contraction” on page 4-58
“Mesh Accelerator” on page 4-65

Mesh Expansion and Contraction

The Expansion factor and Contraction factor options, in Mesh options, control
how much the mesh size is expanded or contracted at each iteration. With the default
Expansion factor value of 2, the pattern search multiplies the mesh size by 2 after each
successful poll. With the default Contraction factor value of 0.5, the pattern search
multiplies the mesh size by 0.5 after each unsuccessful poll.

You can view the expansion and contraction of the mesh size during the pattern search
by selecting Mesh size in the Plot functions pane. To also display the values of
the mesh size and objective function at the command line, set Level of display to
Iterative in the Display to command window options.

For example, set up the problem described in “Linearly Constrained Problem” on page
4-69 as follows:

1 Enter the following at the command line:

x0 = [2 1 0 9 1 0];

Aineq = [-8 7 3 -4 9 0];

bineq = 7;

Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];

beq = [84 62 65 1];

2 Set up your problem in the Optimization app to match the following figures.
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3 Run the optimization.

The Optimization app displays the following plot.
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To see the changes in mesh size more clearly, change the y-axis to logarithmic scaling as
follows:

1 Select Axes Properties from the Edit menu in the plot window.
2 In the Properties Editor, select the Y Axis tab.
3 Set Scale to Log.

Updating these settings in the MATLAB Property Editor shows the plot in the following
figure.
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The first 5 iterations result in successful polls, so the mesh sizes increase steadily during
this time. You can see that the first unsuccessful poll occurs at iteration 6 by looking at
the command-line display:

Iter     f-count          f(x)      MeshSize     Method

    0        1        2273.76             1      

    1        2        2251.69             2     Successful Poll

    2        3        2209.86             4     Successful Poll

    3        4        2135.43             8     Successful Poll

    4        5        2023.48            16     Successful Poll

    5        6        1947.23            32     Successful Poll

    6       15        1947.23            16     Refine Mesh

Note that at iteration 5, which is successful, the mesh size doubles for the next iteration.
But at iteration 6, which is unsuccessful, the mesh size is multiplied 0.5.

To see how Expansion factor and Contraction factor affect the pattern search, make
the following changes:

• Set Expansion factor to 3.0.
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• Set Contraction factor to 2/3.

Then click Start. The Run solver and view results pane shows that the final point
is approximately the same as with the default settings of Expansion factor and
Contraction factor, but that the pattern search takes longer to reach that point.
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When you change the scaling of the y-axis to logarithmic, the mesh size plot appears as
shown in the following figure.
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Note that the mesh size increases faster with Expansion factor set to 3.0, as compared
with the default value of 2.0, and decreases more slowly with Contraction factor set to
0.75, as compared with the default value of 0.5.

Mesh Accelerator

The mesh accelerator can make a pattern search converge faster to an optimal point
by reducing the number of iterations required to reach the mesh tolerance. When the
mesh size is below a certain value, the pattern search contracts the mesh size by a factor
smaller than the Contraction factor factor. Mesh accelerator applies only to the GPS
and GSS algorithms.

Note For best results, use the mesh accelerator for problems in which the objective
function is not too steep near the optimal point, or you might lose some accuracy. For
differentiable problems, this means that the absolute value of the derivative is not too
large near the solution.
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To use the mesh accelerator, set Accelerator to On in the Mesh options. Or, at the
command line, set the MeshAccelerator option to 'on'.

For example, set up the problem described in “Linearly Constrained Problem” on page
4-69 as follows:

1 Enter the following at the command line:

x0 = [2 1 0 9 1 0];

Aineq = [-8 7 3 -4 9 0];

bineq = 7;

Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];

beq = [84 62 65 1];

2 Set up your problem in the Optimization app to match the following figures.
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3 Run the optimization.

The number of iterations required to reach the mesh tolerance is 78, as compared with 84
when Accelerator is set to Off.

You can see the effect of the mesh accelerator by setting Level of display to Iterative
in Display to command window. Run the example with Accelerator set to On,
and then run it again with Accelerator set to Off. The mesh sizes are the same until
iteration 70, but differ at iteration 71. The MATLAB Command Window displays the
following lines for iterations 70 and 71 with Accelerator set to Off.

Iter     f-count        f(x)       MeshSize      Method

   70      618        1919.54     6.104e-05     Refine Mesh

   71      630        1919.54     3.052e-05     Refine Mesh

Note that the mesh size is multiplied by 0.5, the default value of Contraction factor.

For comparison, the Command Window displays the following lines for the same iteration
numbers with Accelerator set to On.

Iter     f-count        f(x)       MeshSize      Method
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   70      618        1919.54     6.104e-05     Refine Mesh

   71      630        1919.54     1.526e-05     Refine Mesh

In this case the mesh size is multiplied by 0.25.
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Constrained Minimization Using patternsearch

In this section...

“Linearly Constrained Problem” on page 4-69
“Nonlinearly Constrained Problem” on page 4-72

Linearly Constrained Problem

Problem Description

This section presents an example of performing a pattern search on a constrained
minimization problem. The example minimizes the function
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Performing a Pattern Search on the Example

To perform a pattern search on the example, first enter

optimtool('patternsearch')

to open the Optimization app, or enter optimtool and then choose patternsearch
from the Solver menu. Then type the following function in the Objective function
field:

@lincontest7

lincontest7 is a file included in Global Optimization Toolbox software that computes
the objective function for the example. Because the matrices and vectors defining the
starting point and constraints are large, it is more convenient to set their values as
variables in the MATLAB workspace first and then enter the variable names in the
Optimization app. To do so, enter

x0 = [2 1 0 9 1 0];

Aineq = [-8 7 3 -4 9 0];

bineq = 7;

Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];

beq = [84 62 65 1];

Then, enter the following in the Optimization app:

• Set Start point to x0.
• Set the following Linear inequalities:

• Set A to Aineq.
• Set b to bineq.
• Set Aeq to Aeq.
• Set beq to beq.
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The following figure shows these settings in the Optimization app.

Since this is a linearly constrained problem, set the Poll method to GSS Positive
basis 2N. For more information about the efficiency of the GSS search methods for
linearly constrained problems, see “Compare the Efficiency of Poll Options” on page 4-51.

Then click Start to run the pattern search. When the search is finished, the results are
displayed in Run solver and view results pane, as shown in the following figure.
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Nonlinearly Constrained Problem

Suppose you want to minimize the simple objective function of two variables x1 and x2,
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Begin by creating the objective and constraint functions. First, create a file named
simple_objective.m as follows:
function y = simple_objective(x)

y = (4 - 2.1*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + (-4 + 4*x(2)^2)*x(2)^2;
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The pattern search solver assumes the objective function will take one input x where
x has as many elements as number of variables in the problem. The objective function
computes the value of the function and returns that scalar value in its one return
argument y.

Then create a file named simple_constraint.m containing the constraints:

function [c, ceq] = simple_constraint(x)

c = [1.5 + x(1)*x(2) + x(1) - x(2);

-x(1)*x(2) + 10];

ceq = [];

The pattern search solver assumes the constraint function will take one input x, where
x has as many elements as the number of variables in the problem. The constraint
function computes the values of all the inequality and equality constraints and returns
two vectors, c and ceq, respectively.

Next, to minimize the objective function using the patternsearch function, you need to
pass in a function handle to the objective function as well as specifying a start point as
the second argument. Lower and upper bounds are provided as LB and UB respectively.
In addition, you also need to pass a function handle to the nonlinear constraint function.
ObjectiveFunction = @simple_objective;

X0 = [0 0];   % Starting point

LB = [0 0];   % Lower bound

UB = [1 13];  % Upper bound

ConstraintFunction = @simple_constraint;

[x,fval] = patternsearch(ObjectiveFunction,X0,[],[],[],[],...

                         LB,UB,ConstraintFunction)

Optimization terminated: mesh size less than options.TolMesh

 and constraint violation is less than options.TolCon.

x =

    0.8122   12.3122

fval =

  9.1324e+004

Next, plot the results. Create an options structure using psoptimset that selects two
plot functions. The first plot function psplotbestf plots the best objective function
value at every iteration. The second plot function psplotmaxconstr plots the maximum
constraint violation at every iteration.

Note: You can also visualize the progress of the algorithm by displaying information to
the Command Window using the 'Display' option.
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options = psoptimset('PlotFcns',{@psplotbestf,@psplotmaxconstr},'Display','iter');

[x,fval] = patternsearch(ObjectiveFunction,X0,[],[],[],[],LB,UB,ConstraintFunction,options)

                                  max

  Iter   f-count      f(x)      constraint   MeshSize      Method

    0     1            0           10       0.8919    

    1    28       113580            0        0.001   Increase penalty

    2   105        91324    1.788e-07        1e-05   Increase penalty

    3   192        91324    1.187e-11        1e-07   Increase penalty

Optimization terminated: mesh size less than options.TolMesh

 and constraint violation is less than options.TolCon.

x =

    0.8122   12.3122

fval =

  9.1324e+004

Best Objective Function Value and Maximum Constraint Violation at Each Iteration



 Use Cache

4-75

Use Cache

Typically, at any given iteration of a pattern search, some of the mesh points might
coincide with mesh points at previous iterations. By default, the pattern search
recomputes the objective function at these mesh points even though it has already
computed their values and found that they are not optimal. If computing the objective
function takes a long time—say, several minutes—this can make the pattern search run
significantly longer.

You can eliminate these redundant computations by using a cache, that is, by storing a
history of the points that the pattern search has already visited. To do so, set Cache to
On in Cache options. At each poll, the pattern search checks to see whether the current
mesh point is within a specified tolerance, Tolerance, of a point in the cache. If so,
the search does not compute the objective function for that point, but uses the cached
function value and moves on to the next point.

Note When Cache is set to On, the pattern search might fail to identify a point in the
current mesh that improves the objective function because it is within the specified
tolerance of a point in the cache. As a result, the pattern search might run for more
iterations with Cache set to On than with Cache set to Off. It is generally a good idea
to keep the value of Tolerance very small, especially for highly nonlinear objective
functions.

For example, set up the problem described in “Linearly Constrained Problem” on page
4-69 as follows:

1 Enter the following at the command line:

x0 = [2 1 0 9 1 0];

Aineq = [-8 7 3 -4 9 0];

bineq = 7;

Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];

beq = [84 62 65 1];

2 Set up your problem in the Optimization app to match the following figures.
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3 Run the optimization.

After the pattern search finishes, the plots appear as shown in the following figure.
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Note that the total function count is 758.

Now, set Cache to On and run the example again. This time, the plots appear as shown
in the following figure.
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This time, the total function count is reduced to 734.
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Vectorize the Objective and Constraint Functions

In this section...

“Vectorize for Speed” on page 4-80
“Vectorized Objective Function” on page 4-80
“Vectorized Constraint Functions” on page 4-83
“Example of Vectorized Objective and Constraints” on page 4-83

Vectorize for Speed

Direct search often runs faster if you vectorize the objective and nonlinear constraint
functions. This means your functions evaluate all the points in a poll or search pattern
at once, with one function call, without having to loop through the points one at a
time. Therefore, the option Vectorized = 'on' works only when CompletePoll or
CompleteSearch is also set to 'on'. However, when you set Vectorized = 'on',
patternsearch checks that the objective and any nonlinear constraint functions give
outputs of the correct shape for vectorized calculations, regardless of the setting of the
CompletePoll or CompleteSearch options.

If there are nonlinear constraints, the objective function and the nonlinear constraints all
need to be vectorized in order for the algorithm to compute in a vectorized manner.

Note: Write your vectorized objective function or nonlinear constraint function to accept
a matrix with an arbitrary number of points. patternsearch sometimes evaluates a
single point even during a vectorized calculation.

Vectorized Objective Function

A vectorized objective function accepts a matrix as input and generates a vector of
function values, where each function value corresponds to one row or column of the input
matrix. patternsearch resolves the ambiguity in whether the rows or columns of the
matrix represent the points of a pattern as follows. Suppose the input matrix has m rows
and n columns:

• If the initial point x0 is a column vector of size m, the objective function takes each
column of the matrix as a point in the pattern and returns a row vector of size n.
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• If the initial point x0 is a row vector of size n, the objective function takes each row of
the matrix as a point in the pattern and returns a column vector of size m.

• If the initial point x0 is a scalar, patternsearch assumes that x0 is a row vector.
Therefore, the input matrix has one column (n = 1, the input matrix is a vector), and
each entry of the matrix represents one row for the objective function to evaluate. The
output of the objective function in this case is a column vector of size m.

Pictorially, the matrix and calculation are represented by the following figure.

If x0 is a
column

Each column represents
one search/poll point

...

The matrix passed to
objective and constraint functions

.
.
.

The matrix passed to
objective and constraint functions

Each row represents
one search/poll point

If x0 is a row

Results

Results

Structure of Vectorized Functions

For example, suppose the objective function is
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f x x x x x x x( ) / .= + - - + -1
4

2
4

1
2

2
2

1 24 2 3 2

If the initial vector x0 is a column vector, such as [0;0], a function for vectorized
evaluation is

function f = vectorizedc(x)

f = x(1,:).^4+x(2,:).^4-4*x(1,:).^2-2*x(2,:).^2 ...

    +3*x(1,:)-.5*x(2,:);

If the initial vector x0 is a row vector, such as [0,0], a function for vectorized evaluation
is

function f = vectorizedr(x)

f = x(:,1).^4+x(:,2).^4-4*x(:,1).^2-2*x(:,2).^2 ...

    +3*x(:,1)-.5*x(:,2);

Tip If you want to use the same objective (fitness) function for both pattern search and
genetic algorithm, write your function to have the points represented by row vectors, and
write x0 as a row vector. The genetic algorithm always takes individuals as the rows
of a matrix. This was a design decision—the genetic algorithm does not require a user-
supplied population, so needs to have a default format.

To minimize vectorizedc, enter the following commands:

options=psoptimset('Vectorized','on','CompletePoll','on');

x0=[0;0];

[x fval]=patternsearch(@vectorizedc,x0,...

         [],[],[],[],[],[],[],options)

MATLAB returns the following output:

Optimization terminated: mesh size less than options.TolMesh.

x =

   -1.5737

    1.0575

fval =

  -10.0088
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Vectorized Constraint Functions

Only nonlinear constraints need to be vectorized; bounds and linear constraints are
handled automatically. If there are nonlinear constraints, the objective function and the
nonlinear constraints all need to be vectorized in order for the algorithm to compute in a
vectorized manner.

The same considerations hold for constraint functions as for objective functions: the
initial point x0 determines the type of points (row or column vectors) in the poll or
search. If the initial point is a row vector of size k, the matrix x passed to the constraint
function has k columns. Similarly, if the initial point is a column vector of size k, the
matrix of poll or search points has k rows. The figure Structure of Vectorized Functions
may make this clear. If the initial point is a scalar, patternsearch assumes that it is a
row vector.

Your nonlinear constraint function returns two matrices, one for inequality constraints,
and one for equality constraints. Suppose there are nc nonlinear inequality constraints
and nceq nonlinear equality constraints. For row vector x0, the constraint matrices have
nc and nceq columns respectively, and the number of rows is the same as in the input
matrix. Similarly, for a column vector x0, the constraint matrices have nc and nceq rows
respectively, and the number of columns is the same as in the input matrix. In figure
Structure of Vectorized Functions, “Results” includes both nc and nceq.

Example of Vectorized Objective and Constraints

Suppose that the nonlinear constraints are

x x

x x

1
2

2
2

2 1

9 4
1

1

+ £

≥ ( ) -

 (the interior of an ellipse),

cosh .

Write a function for these constraints for row-form x0 as follows:

function [c ceq] = ellipsecosh(x)

c(:,1)=x(:,1).^2/9+x(:,2).^2/4-1;

c(:,2)=cosh(x(:,1))-x(:,2)-1;

ceq=[];
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Minimize vectorizedr (defined in “Vectorized Objective Function” on page 4-80)
subject to the constraints ellipsecosh:

x0=[0,0];

options=psoptimset('Vectorized','on','CompletePoll','on');

[x fval]=patternsearch(@vectorizedr,x0,...

         [],[],[],[],[],[],@ellipsecosh,options)

MATLAB returns the following output:

Optimization terminated: mesh size less than options.TolMesh

 and constraint violation is less than options.TolCon.

x =

   -1.3516    1.0612

fval =

   -9.5394
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Optimize an ODE in Parallel

This example shows how to optimize parameters of an ODE.

It also shows how to avoid computing the objective and nonlinear constraint function
twice when the ODE solution returns both. The example compares patternsearch and
ga in terms of time to run the solver and the quality of the solutions.

You need a Parallel Computing Toolbox license to use parallel computing.

Step 1. Define the problem.

The problem is to change the position and angle of a cannon to fire a projectile as far as
possible beyond a wall. The cannon has a muzzle velocity of 300 m/s. The wall is 20 m
high. If the cannon is too close to the wall, it has to fire at too steep an angle, and the
projectile does not travel far enough. If the cannon is too far from the wall, the projectile
does not travel far enough either.

Air resistance slows the projectile. The resisting force is proportional to the square of the
velocity, with proportionality constant 0.02. Gravity acts on the projectile, accelerating it
downward with constant 9.81 m/s2. Therefore, the equations of motion for the trajectory
x(t) are

d x t

dt

v t v t

2

2
0 02 0 9 81

( )
. ( ) ( ) ( , . ),= - -

where v t dx t dt( ) ( ) / .=

The initial position x0 and initial velocity xp0 are 2-D vectors. However, the initial
height x0(2) is 0, so the initial position depends only on the scalar x0(1). And the
initial velocity xp0 has magnitude 300 (the muzzle velocity), so depends only on the
initial angle, a scalar. For an initial angle th, xp0 = 300*(cos(th),sin(th)).
Therefore, the optimization problem depends only on two scalars, so it is a 2-D problem.
Use the horizontal distance and the angle as the decision variables.

Step 2. Formulate the ODE model.

ODE solvers require you to formulate your model as a first-order system. Augment the
trajectory vector (x1(t),x2(t)) with its time derivative (x'1(t),x'2(t)) to form a 4-D trajectory
vector. In terms of this augmented vector, the differential equation becomes
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Write the differential equation as a function file, and save it on your MATLAB path.

function f = cannonfodder(t,x)

f = [x(3);x(4);x(3);x(4)]; % initial, gets f(1) and f(2) correct

nrm = norm(x(3:4)) * .02; % norm of the velocity times constant

f(3) = -x(3)*nrm; % horizontal acceleration

f(4) = -x(4)*nrm - 9.81; % vertical acceleration

Visualize the solution of the ODE starting 30 m from the wall at an angle of pi/3.
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Code for generating the figure

x0 = [-30;0;300*cos(pi/3);300*sin(pi/3)];

sol = ode45(@cannonfodder,[0,10],x0);

% Find the time when the projectile lands

zerofnd = fzero(@(r)deval(sol,r,2),[sol.x(2),sol.x(end)]);

t = linspace(0,zerofnd); % equal times for plot

xs = deval(sol,t,1); % interpolated x values

ys = deval(sol,t,2); % interpolated y values

plot(xs,ys)

hold on

plot([0,0],[0,20],'k') % Draw the wall

xlabel('Horizontal distance')

ylabel('Trajectory height')
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legend('Trajectory','Wall','Location','NW')

ylim([0 120])

hold off

Step 3. Solve using patternsearch.

The problem is to find initial position x0(1) and initial angle x0(2) to maximize the
distance from the wall the projectile lands. Because this is a maximization problem,
minimize the negative of the distance (see “Maximizing vs. Minimizing” on page 2-5).

To use patternsearch to solve this problem, you must provide the objective, constraint,
initial guess, and options.

These two files are the objective and constraint functions. Copy them to a folder on your
MATLAB path.

function f = cannonobjective(x)

x0 = [x(1);0;300*cos(x(2));300*sin(x(2))];

sol = ode45(@cannonfodder,[0,15],x0);

% Find the time t when y_2(t) = 0

zerofnd = fzero(@(r)deval(sol,r,2),[sol.x(2),sol.x(end)]);

% Then find the x-position at that time

f = deval(sol,zerofnd,1);

f = -f; % take negative of distance for maximization

function [c,ceq] = cannonconstraint(x)

ceq = [];

x0 = [x(1);0;300*cos(x(2));300*sin(x(2))];

sol = ode45(@cannonfodder,[0,15],x0);

if sol.y(1,end) <= 0 % projectile never reaches wall

    c = 20 - sol.y(2,end);

else

    % Find when the projectile crosses x = 0

    zerofnd = fzero(@(r)deval(sol,r,1),[sol.x(2),sol.x(end)]);

    % Then find the height there, and subtract from 20

    c = 20 - deval(sol,zerofnd,2);
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end

Notice that the objective and constraint functions set their input variable x0 to a 4-D
initial point for the ODE solver. The ODE solver does not stop if the projectile hits the
wall. Instead, the constraint function simply becomes positive, indicating an infeasible
initial value.

The initial position x0(1) cannot be above 0, and it is futile to have it be below –200. (It
should be near –20 because, with no air resistance, the longest trajectory would start at –
20 at an angle pi/4.) Similarly, the initial angle x0(2) cannot be below 0, and cannot be
above pi/2. Set bounds slightly away from these initial values:

lb = [-200;0.05];

ub = [-1;pi/2-.05];

x0 = [-30,pi/3]; % initial guess

Set the CompletePoll option to 'on'. This gives a higher-quality solution, and enables
direct comparison with parallel processing, because computing in parallel requires this
setting.

opts = psoptimset('CompletePoll','on');

Call patternsearch to solve the problem.

tic % time the solution

[xsolution,distance,eflag,outpt] = patternsearch(@cannonobjective,x0,...

    [],[],[],[],lb,ub,@cannonconstraint,opts)

toc

Optimization terminated: mesh size less than options.TolMesh

 and constraint violation is less than options.TolCon.

xsolution =

  -28.8123    0.6095

distance =

 -125.9880

eflag =

     1

outpt =

         function: @cannonobjective
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      problemtype: 'nonlinearconstr'

       pollmethod: 'gpspositivebasis2n'

    maxconstraint: 0

     searchmethod: []

       iterations: 5

        funccount: 269

         meshsize: 8.9125e-07

         rngstate: [1x1 struct]

          message: 'Optimization terminated: mesh size less than options.TolMesh…'

Elapsed time is 3.174088 seconds.

Starting the projectile about 29 m from the wall at an angle 0.6095 radian results in the
farthest distance, about 126 m. The reported distance is negative because the objective
function is the negative of the distance to the wall.

Visualize the solution.

x0 = [xsolution(1);0;300*cos(xsolution(2));300*sin(xsolution(2))];

sol = ode45(@cannonfodder,[0,15],x0);

% Find the time when the projectile lands

zerofnd = fzero(@(r)deval(sol,r,2),[sol.x(2),sol.x(end)]);

t = linspace(0,zerofnd); % equal times for plot

xs = deval(sol,t,1); % interpolated x values

ys = deval(sol,t,2); % interpolated y values

plot(xs,ys)

hold on

plot([0,0],[0,20],'k') % Draw the wall

xlabel('Horizontal distance')

ylabel('Trajectory height')

legend('Trajectory','Wall','Location','NW')

ylim([0 70])

hold off
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Step 4. Avoid calling the expensive subroutine twice.

Both the objective and nonlinear constraint function call the ODE solver to calculate
their values. Use the technique in “Objective and Nonlinear Constraints in the Same
Function” to avoid calling the solver twice. The runcannon file implements this
technique. Copy this file to a folder on your MATLAB path.

function [x,f,eflag,outpt] = runcannon(x0,opts)

if nargin == 1 % No options supplied

    opts = [];

end

xLast = []; % Last place ode solver was called



4 Using Direct Search

4-92

sol = []; % ODE solution structure

fun = @objfun; % the objective function, nested below

cfun = @constr; % the constraint function, nested below

lb = [-200;0.05];

ub = [-1;pi/2-.05];

% Call patternsearch

[x,f,eflag,outpt] = patternsearch(fun,x0,[],[],[],[],lb,ub,cfun,opts);

    function y = objfun(x)

        if ~isequal(x,xLast) % Check if computation is necessary

            x0 = [x(1);0;300*cos(x(2));300*sin(x(2))];

            sol = ode45(@cannonfodder,[0,15],x0);

            xLast = x;

        end

        % Now compute objective function

        % First find when the projectile hits the ground

        zerofnd = fzero(@(r)deval(sol,r,2),[sol.x(2),sol.x(end)]);

        % Then compute the x-position at that time

        y = deval(sol,zerofnd,1);

        y = -y; % take negative of distance

    end

    function [c,ceq] = constr(x)

       ceq = [];

        if ~isequal(x,xLast) % Check if computation is necessary

            x0 = [x(1);0;300*cos(x(2));300*sin(x(2))];

            sol = ode45(@cannonfodder,[0,15],x0);

            xLast = x;

        end

        % Now compute constraint functions

        % First find when the projectile crosses x = 0

        zerofnd = fzero(@(r)deval(sol,r,1),[sol.x(1),sol.x(end)]);

        % Then find the height there, and subtract from 20

        c = 20 - deval(sol,zerofnd,2);

    end

end

Reinitialize the problem and time the call to runcannon.

x0 = [-30;pi/3];

tic
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[xsolution,distance,eflag,outpt] = runcannon(x0,opts);

toc

Elapsed time is 2.610590 seconds.

The solver ran faster than before. If you examine the solution, you see that the output is
identical.

Step 5. Compute in parallel.

Try to save more time by computing in parallel. Begin by opening a parallel pool of
workers.

parpool

Starting parpool using the 'local' profile ... connected to 4 workers.

ans = 

 Pool with properties: 

            Connected: true

           NumWorkers: 4

              Cluster: local

        AttachedFiles: {}

          IdleTimeout: 30 minute(s) (30 minutes remaining)

          SpmdEnabled: true

Set the options to use parallel computing, and rerun the solver.

opts = psoptimset(opts,'UseParallel',true);

x0 = [-30;pi/3];

tic

[xsolution,distance,eflag,outpt] = runcannon(x0,opts);

toc

Elapsed time is 3.917971 seconds.

In this case, parallel computing was slower. If you examine the solution, you see that the
output is identical.

Step 6. Compare with the genetic algorithm.

You can also try to solve the problem using the genetic algorithm. However, the genetic
algorithm is usually slower and less reliable.
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The runcannonga file calls the genetic algorithm and avoids double evaluation of the
ODE solver. It resembles runcannon, but calls ga instead of patternsearch, and
also checks whether the trajectory reaches the wall. Copy this file to a folder on your
MATLAB path.

function [x,f,eflag,outpt] = runcannonga(opts)

if nargin == 1 % No options supplied

    opts = [];

end

xLast = []; % Last place ode solver was called

sol = []; % ODE solution structure

fun = @objfun; % the objective function, nested below

cfun = @constr; % the constraint function, nested below

lb = [-200;0.05];

ub = [-1;pi/2-.05];

% Call ga

[x,f,eflag,outpt] = ga(fun,2,[],[],[],[],lb,ub,cfun,opts);

    function y = objfun(x)

        if ~isequal(x,xLast) % Check if computation is necessary

            x0 = [x(1);0;300*cos(x(2));300*sin(x(2))];

            sol = ode45(@cannonfodder,[0,15],x0);

            xLast = x;

        end

        % Now compute objective function

        % First find when the projectile hits the ground

        zerofnd = fzero(@(r)deval(sol,r,2),[sol.x(2),sol.x(end)]);

        % Then compute the x-position at that time

        y = deval(sol,zerofnd,1);

        y = -y; % take negative of distance

    end

    function [c,ceq] = constr(x)

       ceq = [];

        if ~isequal(x,xLast) % Check if computation is necessary

            x0 = [x(1);0;300*cos(x(2));300*sin(x(2))];

            sol = ode45(@cannonfodder,[0,15],x0);

            xLast = x;

        end
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        % Now compute constraint functions

        if sol.y(1,end) <= 0 % projectile never reaches wall

            c = 20 - sol.y(2,end);

        else

            % Find when the projectile crosses x = 0

            zerofnd = fzero(@(r)deval(sol,r,1),[sol.x(2),sol.x(end)]);

            % Then find the height there, and subtract from 20

            c = 20 - deval(sol,zerofnd,2);

        end

    end

end

Call runcannonga in parallel.

opts = gaoptimset('UseParallel',true);

rng default % for reproducibility

tic

[xsolution,distance,eflag,outpt] = runcannonga(opts)

toc

Optimization terminated: average change in the fitness value less than 

options.TolFun and constraint violation is less than options.TolCon.

xsolution =

  -17.9172    0.8417

distance =

 -116.6263

eflag =

     1

outpt = 

      problemtype: 'nonlinearconstr'

         rngstate: [1x1 struct]

      generations: 5

        funccount: 20212

          message: [1x140 char]

    maxconstraint: 0

Elapsed time is 119.630284 seconds.
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The ga solution is not as good as the patternsearch solution: 117 m versus 126 m. ga
took much more time: about 120 s versus under 5 s.

Related Examples
• “Objective and Nonlinear Constraints in the Same Function”

More About
• “Parallel Computing”
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Using the Genetic Algorithm

• “What Is the Genetic Algorithm?” on page 5-2
• “Optimize Using ga” on page 5-3
• “Minimize Rastrigin's Function” on page 5-6
• “Genetic Algorithm Terminology” on page 5-15
• “How the Genetic Algorithm Works” on page 5-18
• “Mixed Integer Optimization” on page 5-27
• “Solving a Mixed Integer Engineering Design Problem Using the Genetic Algorithm”

on page 5-37
• “Nonlinear Constraint Solver Algorithms” on page 5-49
• “Create Custom Plot Function” on page 5-52
• “Reproduce Results in Optimization App” on page 5-56
• “Resume ga” on page 5-57
• “Options and Outputs” on page 5-63
• “Use Exported Options and Problems” on page 5-67
• “Reproduce Results” on page 5-68
• “Run ga from a File” on page 5-70
• “Population Diversity” on page 5-73
• “Fitness Scaling” on page 5-84
• “Vary Mutation and Crossover” on page 5-88
• “Global vs. Local Minima Using ga” on page 5-97
• “Include a Hybrid Function” on page 5-104
• “Set Maximum Number of Generations” on page 5-108
• “Vectorize the Fitness Function” on page 5-110
• “Constrained Minimization Using ga” on page 5-112
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What Is the Genetic Algorithm?

The genetic algorithm is a method for solving both constrained and unconstrained
optimization problems that is based on natural selection, the process that drives
biological evolution. The genetic algorithm repeatedly modifies a population of individual
solutions. At each step, the genetic algorithm selects individuals at random from the
current population to be parents and uses them to produce the children for the next
generation. Over successive generations, the population "evolves" toward an optimal
solution. You can apply the genetic algorithm to solve a variety of optimization problems
that are not well suited for standard optimization algorithms, including problems in
which the objective function is discontinuous, nondifferentiable, stochastic, or highly
nonlinear. The genetic algorithm can address problems of mixed integer programming,
where some components are restricted to be integer-valued.

The genetic algorithm uses three main types of rules at each step to create the next
generation from the current population:

• Selection rules select the individuals, called parents, that contribute to the population
at the next generation.

• Crossover rules combine two parents to form children for the next generation.
• Mutation rules apply random changes to individual parents to form children.

The genetic algorithm differs from a classical, derivative-based, optimization algorithm
in two main ways, as summarized in the following table.

Classical Algorithm Genetic Algorithm

Generates a single point at each iteration.
The sequence of points approaches an
optimal solution.

Generates a population of points at each
iteration. The best point in the population
approaches an optimal solution.

Selects the next point in the sequence by a
deterministic computation.

Selects the next population by computation
which uses random number generators.
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Optimize Using ga

In this section...

“Calling the Function ga at the Command Line” on page 5-3
“Use the Optimization App” on page 5-3

Calling the Function ga at the Command Line

To use the genetic algorithm at the command line, call the genetic algorithm function ga
with the syntax

[x fval] = ga(@fitnessfun, nvars, options)

where

• @fitnessfun is a handle to the fitness function.
• nvars is the number of independent variables for the fitness function.
• options is a structure containing options for the genetic algorithm. If you do not pass

in this argument, ga uses its default options.

The results are given by

• x — Point at which the final value is attained
• fval — Final value of the fitness function

For an example, see “Finding the Minimum from the Command Line” on page 5-10.

Using the function ga is convenient if you want to

• Return results directly to the MATLAB workspace
• Run the genetic algorithm multiple times with different options, by calling ga from a

file

Use the Optimization App

To open the Optimization app, enter

optimtool('ga')
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at the command line, or enter optimtool and then choose ga from the Solver menu.
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You can also start the tool from the MATLAB Apps tab.

To use the Optimization app, you must first enter the following information:

• Fitness function — The objective function you want to minimize. Enter the fitness
function in the form @fitnessfun, where fitnessfun.m is a file that computes the
fitness function. “Compute Objective Functions” on page 2-2 explains how write this
file. The @ sign creates a function handle to fitnessfun.

• Number of variables — The length of the input vector to the fitness function. For
the function my_fun described in “Compute Objective Functions” on page 2-2, you
would enter 2.

You can enter constraints or a nonlinear constraint function for the problem in the
Constraints pane. If the problem is unconstrained, leave these fields blank.

To run the genetic algorithm, click the Start button. The tool displays the results of the
optimization in the Run solver and view results pane.

You can change the options for the genetic algorithm in the Options pane. To view the
options in one of the categories listed in the pane, click the + sign next to it.

For more information,

• See “Optimization App” in the Optimization Toolbox documentation.
• See “Minimize Rastrigin's Function” on page 5-6 for an example of using the tool.
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Minimize Rastrigin's Function

In this section...

“Rastrigin's Function” on page 5-6
“Finding the Minimum of Rastrigin's Function” on page 5-8
“Finding the Minimum from the Command Line” on page 5-10
“Displaying Plots” on page 5-11

Rastrigin's Function

This section presents an example that shows how to find the minimum of Rastrigin's
function, a function that is often used to test the genetic algorithm.

For two independent variables, Rastrigin's function is defined as

Ras x x x x x( ) cos cos .= + + - +( )20 10 2 21
2

2
2

1 2p p

Global Optimization Toolbox software contains the rastriginsfcn.m file, which
computes the values of Rastrigin's function. The following figure shows a plot of
Rastrigin's function.
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Global minimum at [0 0]

As the plot shows, Rastrigin's function has many local minima—the “valleys” in the plot.
However, the function has just one global minimum, which occurs at the point [0 0] in the
x-y plane, as indicated by the vertical line in the plot, where the value of the function is 0.
At any local minimum other than [0 0], the value of Rastrigin's function is greater than 0.
The farther the local minimum is from the origin, the larger the value of the function is
at that point.

Rastrigin's function is often used to test the genetic algorithm, because its many
local minima make it difficult for standard, gradient-based methods to find the global
minimum.

The following contour plot of Rastrigin's function shows the alternating maxima and
minima.
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Finding the Minimum of Rastrigin's Function

This section explains how to find the minimum of Rastrigin's function using the genetic
algorithm.

Note Because the genetic algorithm uses random number generators, the algorithm
returns slightly different results each time you run it.

To find the minimum, do the following steps:

1 Enter optimtool('ga') at the command line to open the Optimization app.
2 Enter the following in the Optimization app:

• In the Fitness function field, enter @rastriginsfcn.
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• In the Number of variables field, enter 2, the number of independent variables
for Rastrigin's function.

The Fitness function and Number of variables fields should appear as shown
in the following figure.

3 Click the Start button in the Run solver and view results pane, as shown in the
following figure.

While the algorithm is running, the Current iteration field displays the number
of the current generation. You can temporarily pause the algorithm by clicking the
Pause button. When you do so, the button name changes to Resume. To resume the
algorithm from the point at which you paused it, click Resume.

When the algorithm is finished, the Run solver and view results pane appears as
shown in the following figure. Your numerical results might differ from those in the
figure, since ga is stochastic.
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The display shows:

• The final value of the fitness function when the algorithm terminated:

Objective function value: 5.550533778020394E-4

Note that the value shown is very close to the actual minimum value of
Rastrigin's function, which is 0. “Setting the Initial Range” on page 5-73,
“Setting the Amount of Mutation” on page 5-88, and “Set Maximum Number
of Generations” on page 5-108 describe some ways to get a result that is closer
to the actual minimum.

• The reason the algorithm terminated.

Optimization terminated: maximum number of generations exceeded.

• The final point, which in this example is [-0.002 -0.001].

Finding the Minimum from the Command Line

To find the minimum of Rastrigin's function from the command line, enter

rng(1,'twister') % for reproducibility

[x fval exitflag] = ga(@rastriginsfcn, 2)

This returns

Optimization terminated:
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average change in the fitness value less than options.TolFun.

x =

   -1.0421   -1.0018

fval =

    2.4385

exitflag =

     1

• x is the final point returned by the algorithm.
• fval is the fitness function value at the final point.
• exitflag is integer value corresponding to the reason that the algorithm terminated.

Note: Because the genetic algorithm uses random number generators, the algorithm
returns slightly different results each time you run it.

Displaying Plots

The Optimization app Plot functions pane enables you to display various plots that
provide information about the genetic algorithm while it is running. This information can
help you change options to improve the performance of the algorithm. For example, to
plot the best and mean values of the fitness function at each generation, select the box
next to Best fitness, as shown in the following figure.
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When you click Start, the Optimization app displays a plot of the best and mean values
of the fitness function at each generation.

Try this on “Minimize Rastrigin's Function” on page 5-6:

When the algorithm stops, the plot appears as shown in the following figure.



 Minimize Rastrigin's Function

5-13

The points at the bottom of the plot denote the best fitness values, while the points above
them denote the averages of the fitness values in each generation. The plot also displays
the best and mean values in the current generation numerically at the top.

To get a better picture of how much the best fitness values are decreasing, you can
change the scaling of the y-axis in the plot to logarithmic scaling. To do so,

1 Select Axes Properties from the Edit menu in the plot window to open the
Property Editor attached to your figure window as shown below.

2 Click the Y Axis tab.
3 In the Y Scale pane, select Log.

The plot now appears as shown in the following figure.
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Typically, the best fitness value improves rapidly in the early generations, when
the individuals are farther from the optimum. The best fitness value improves more
slowly in later generations, whose populations are closer to the optimal point.

Note When you display more than one plot, you can open a larger version of a plot in a
separate window. Right-click (Ctrl-click for Mac) on a blank area in a plot while ga is
running, or after it has stopped, and choose the sole menu item.

“Plot Options” on page 10-29 describes the types of plots you can create.
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Genetic Algorithm Terminology

In this section...

“Fitness Functions” on page 5-15
“Individuals” on page 5-15
“Populations and Generations” on page 5-15
“Diversity” on page 5-16
“Fitness Values and Best Fitness Values” on page 5-16
“Parents and Children” on page 5-17

Fitness Functions

The fitness function is the function you want to optimize. For standard optimization
algorithms, this is known as the objective function. The toolbox software tries to find the
minimum of the fitness function.

Write the fitness function as a file or anonymous function, and pass it as a function
handle input argument to the main genetic algorithm function.

Individuals

An individual is any point to which you can apply the fitness function. The value of the
fitness function for an individual is its score. For example, if the fitness function is

f x x x x x x1 2 3 1
2

2
2

3
2

2 1 3 4 2, , ,( ) = +( ) + +( ) + -( )

the vector (2, -3, 1), whose length is the number of variables in the problem, is an
individual. The score of the individual (2, –3, 1) is f(2, –3, 1) = 51.

An individual is sometimes referred to as a genome and the vector entries of an
individual as genes.

Populations and Generations

A population is an array of individuals. For example, if the size of the population is 100
and the number of variables in the fitness function is 3, you represent the population by
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a 100-by-3 matrix. The same individual can appear more than once in the population. For
example, the individual (2, -3, 1) can appear in more than one row of the array.

At each iteration, the genetic algorithm performs a series of computations on the current
population to produce a new population. Each successive population is called a new
generation.

Diversity

Diversity refers to the average distance between individuals in a population. A population
has high diversity if the average distance is large; otherwise it has low diversity. In the
following figure, the population on the left has high diversity, while the population on the
right has low diversity.

Diversity is essential to the genetic algorithm because it enables the algorithm to search
a larger region of the space.

Fitness Values and Best Fitness Values

The fitness value of an individual is the value of the fitness function for that individual.
Because the toolbox software finds the minimum of the fitness function, the best fitness
value for a population is the smallest fitness value for any individual in the population.
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Parents and Children

To create the next generation, the genetic algorithm selects certain individuals in the
current population, called parents, and uses them to create individuals in the next
generation, called children. Typically, the algorithm is more likely to select parents that
have better fitness values.



5 Using the Genetic Algorithm

5-18

How the Genetic Algorithm Works

In this section...

“Outline of the Algorithm” on page 5-18
“Initial Population” on page 5-19
“Creating the Next Generation” on page 5-19
“Plots of Later Generations” on page 5-21
“Stopping Conditions for the Algorithm” on page 5-22
“Selection” on page 5-25
“Reproduction Options” on page 5-25
“Mutation and Crossover” on page 5-26

Outline of the Algorithm

The following outline summarizes how the genetic algorithm works:

1 The algorithm begins by creating a random initial population.
2 The algorithm then creates a sequence of new populations. At each step, the

algorithm uses the individuals in the current generation to create the next
population. To create the new population, the algorithm performs the following
steps:

a Scores each member of the current population by computing its fitness value.
b Scales the raw fitness scores to convert them into a more usable range of values.
c Selects members, called parents, based on their fitness.
d Some of the individuals in the current population that have lower fitness are

chosen as elite. These elite individuals are passed to the next population.
e Produces children from the parents. Children are produced either by making

random changes to a single parent—mutation—or by combining the vector
entries of a pair of parents—crossover.

f Replaces the current population with the children to form the next generation.
3 The algorithm stops when one of the stopping criteria is met. See “Stopping

Conditions for the Algorithm” on page 5-22.
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Initial Population

The algorithm begins by creating a random initial population, as shown in the following
figure.
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Initial population

In this example, the initial population contains 20 individuals, which is the default value
of Population size in the Population options. Note that all the individuals in the
initial population lie in the upper-right quadrant of the picture, that is, their coordinates
lie between 0 and 1, because the default value of Initial range in the Population
options is [0;1].

If you know approximately where the minimal point for a function lies, you should set
Initial range so that the point lies near the middle of that range. For example, if you
believe that the minimal point for Rastrigin's function is near the point [0 0], you could
set Initial range to be [-1;1]. However, as this example shows, the genetic algorithm
can find the minimum even with a less than optimal choice for Initial range.

Creating the Next Generation

At each step, the genetic algorithm uses the current population to create the children
that make up the next generation. The algorithm selects a group of individuals in the
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current population, called parents, who contribute their genes—the entries of their
vectors—to their children. The algorithm usually selects individuals that have better
fitness values as parents. You can specify the function that the algorithm uses to select
the parents in the Selection function field in the Selection options.

The genetic algorithm creates three types of children for the next generation:

• Elite children are the individuals in the current generation with the best fitness
values. These individuals automatically survive to the next generation.

• Crossover children are created by combining the vectors of a pair of parents.
• Mutation children are created by introducing random changes, or mutations, to a

single parent.

The following schematic diagram illustrates the three types of children.

“Mutation and Crossover” on page 5-26 explains how to specify the number of
children of each type that the algorithm generates and the functions it uses to perform
crossover and mutation.

The following sections explain how the algorithm creates crossover and mutation
children.

Crossover Children

The algorithm creates crossover children by combining pairs of parents in the current
population. At each coordinate of the child vector, the default crossover function
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randomly selects an entry, or gene, at the same coordinate from one of the two parents
and assigns it to the child. For problems with linear constraints, the default crossover
function creates the child as a random weighted average of the parents.

Mutation Children

The algorithm creates mutation children by randomly changing the genes of individual
parents. By default, for unconstrained problems the algorithm adds a random vector
from a Gaussian distribution to the parent. For bounded or linearly constrained
problems, the child remains feasible.

The following figure shows the children of the initial population, that is, the population
at the second generation, and indicates whether they are elite, crossover, or mutation
children.
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Plots of Later Generations

The following figure shows the populations at iterations 60, 80, 95, and 100.
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Iteration 100

As the number of generations increases, the individuals in the population get closer
together and approach the minimum point [0 0].

Stopping Conditions for the Algorithm

The genetic algorithm uses the following conditions to determine when to stop:

• Generations — The algorithm stops when the number of generations reaches the
value of Generations.

• Time limit — The algorithm stops after running for an amount of time in seconds
equal to Time limit.

• Fitness limit — The algorithm stops when the value of the fitness function for the
best point in the current population is less than or equal to Fitness limit.

• Stall generations — The algorithm stops when the average relative change in the
fitness function value over Stall generations is less than Function tolerance.
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• Stall time limit — The algorithm stops if there is no improvement in the objective
function during an interval of time in seconds equal to Stall time limit.

• Stall test — The stall condition is either average change or geometric
weighted. For geometric weighted, the weighting function is 1/2n, where n is the
number of generations prior to the current. Both stall conditions apply to the relative
change in the fitness function over Stall generations.

• Function Tolerance — The algorithm runs until the average relative change in the
fitness function value over Stall generations is less than Function tolerance.

• Nonlinear constraint tolerance — The Nonlinear constraint tolerance is
not used as stopping criterion. It is used to determine the feasibility with respect to
nonlinear constraints. Also, a point is feasible with respect to linear constraints when
the constraint violation is below the square root of Nonlinear constraint tolerance.

The algorithm stops as soon as any one of these conditions is met. You can specify the
values of these criteria in the Stopping criteria pane in the Optimization app. The
default values are shown in the pane.
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When you run the genetic algorithm, the Run solver and view results panel displays
the criterion that caused the algorithm to stop.

The options Stall time limit and Time limit prevent the algorithm from running
too long. If the algorithm stops due to one of these conditions, you might improve your
results by increasing the values of Stall time limit and Time limit.
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Selection

The selection function chooses parents for the next generation based on their scaled
values from the fitness scaling function. An individual can be selected more than once
as a parent, in which case it contributes its genes to more than one child. The default
selection option, Stochastic uniform, lays out a line in which each parent corresponds
to a section of the line of length proportional to its scaled value. The algorithm moves
along the line in steps of equal size. At each step, the algorithm allocates a parent from
the section it lands on.

A more deterministic selection option is Remainder, which performs two steps:

• In the first step, the function selects parents deterministically according to the integer
part of the scaled value for each individual. For example, if an individual's scaled
value is 2.3, the function selects that individual twice as a parent.

• In the second step, the selection function selects additional parents using the
fractional parts of the scaled values, as in stochastic uniform selection. The function
lays out a line in sections, whose lengths are proportional to the fractional part of the
scaled value of the individuals, and moves along the line in equal steps to select the
parents.

Note that if the fractional parts of the scaled values all equal 0, as can occur using
Top scaling, the selection is entirely deterministic.

For details and more selection options, see “Selection Options” on page 10-37.

Reproduction Options

Reproduction options control how the genetic algorithm creates the next generation. The
options are

• Elite count — The number of individuals with the best fitness values in the current
generation that are guaranteed to survive to the next generation. These individuals
are called elite children. The default value of Elite count is 2.

When Elite count is at least 1, the best fitness value can only decrease from one
generation to the next. This is what you want to happen, since the genetic algorithm
minimizes the fitness function. Setting Elite count to a high value causes the fittest
individuals to dominate the population, which can make the search less effective.

• Crossover fraction — The fraction of individuals in the next generation, other than
elite children, that are created by crossover. “Setting the Crossover Fraction” on page
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5-90 describes how the value of Crossover fraction affects the performance of
the genetic algorithm.

Mutation and Crossover

The genetic algorithm uses the individuals in the current generation to create the
children that make up the next generation. Besides elite children, which correspond
to the individuals in the current generation with the best fitness values, the algorithm
creates

• Crossover children by selecting vector entries, or genes, from a pair of individuals in
the current generation and combines them to form a child

• Mutation children by applying random changes to a single individual in the current
generation to create a child

Both processes are essential to the genetic algorithm. Crossover enables the algorithm
to extract the best genes from different individuals and recombine them into potentially
superior children. Mutation adds to the diversity of a population and thereby increases
the likelihood that the algorithm will generate individuals with better fitness values.

See “Creating the Next Generation” on page 5-19 for an example of how the genetic
algorithm applies mutation and crossover.

You can specify how many of each type of children the algorithm creates as follows:

• Elite count, in Reproduction options, specifies the number of elite children.
• Crossover fraction, in Reproduction options, specifies the fraction of the

population, other than elite children, that are crossover children.

For example, if the Population size is 20, the Elite count is 2, and the Crossover
fraction is 0.8, the numbers of each type of children in the next generation are as
follows:

• There are two elite children.
• There are 18 individuals other than elite children, so the algorithm rounds 0.8*18 =

14.4 to 14 to get the number of crossover children.
• The remaining four individuals, other than elite children, are mutation children.



 Mixed Integer Optimization

5-27

Mixed Integer Optimization

In this section...

“Solving Mixed Integer Optimization Problems” on page 5-27
“Characteristics of the Integer ga Solver” on page 5-29
“Integer ga Algorithm” on page 5-35

Solving Mixed Integer Optimization Problems

ga can solve problems when certain variables are integer-valued. Give IntCon, a vector
of the x components that are integers:

[x,fval,exitflag] = ga(fitnessfcn,nvars,A,b,[],[],...

    lb,ub,nonlcon,IntCon,options)

IntCon is a vector of positive integers that contains the x components that are integer-
valued. For example, if you want to restrict x(2) and x(10) to be integers, set IntCon
to [2,10].

Note: Restrictions exist on the types of problems that ga can solve with integer variables.
In particular, ga does not accept any equality constraints when there are integer
variables. For details, see “Characteristics of the Integer ga Solver” on page 5-29.

Tip ga solves integer problems best when you provide lower and upper bounds for every x
component.

Mixed Integer Optimization of Rastrigin's Function

This example shows how to find the minimum of Rastrigin's function restricted so the
first component of x is an integer. The components of x are further restricted to be in the
region  .

Set up the bounds for your problem

lb = [5*pi,-20*pi];

ub = [20*pi,-4*pi];
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Set a plot function so you can view the progress of ga

opts = gaoptimset('PlotFcns',@gaplotbestf);

Call the ga solver where x(1) has integer values

rng(1,'twister') % for reproducibility

IntCon = 1;

[x,fval,exitflag] = ga(@rastriginsfcn,2,[],[],[],[],...

    lb,ub,[],IntCon,opts)

Optimization terminated: average change in the penalty fitness value less than options.TolFun

and constraint violation is less than options.TolCon.

x =

   16.0000  -12.9325

fval =

  424.1355

exitflag =

     1
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ga converges quickly to the solution.

Characteristics of the Integer ga Solver

There are some restrictions on the types of problems that ga can solve when you include
integer constraints:

• No linear equality constraints. You must have Aeq = [] and beq = []. For a
possible workaround, see “No Equality Constraints” on page 5-30.

• No nonlinear equality constraints. Any nonlinear constraint function must return
[] for the nonlinear equality constraint. For a possible workaround, see “Example:
Integer Programming with a Nonlinear Equality Constraint” on page 5-30.
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• Only doubleVector population type.
• No custom creation function (CreationFcn option), crossover function

(CrossoverFcn option), mutation function (MutationFcn option), or initial scores
(InitialScores option). If you supply any of these, ga overrides their settings.

• ga uses only the binary tournament selection function (SelectionFcn option), and
overrides any other setting.

• No hybrid function. ga overrides any setting of the HybridFcn option.
• ga ignores the ParetoFraction, DistanceMeasureFcn, InitialPenalty, and

PenaltyFactor options.

The listed restrictions are mainly natural, not arbitrary. For example:

• There are no hybrid functions that support integer constraints. So ga does not use
hybrid functions when there are integer constraints.

• To obtain integer variables, ga uses special creation, crossover, and mutation
functions.

No Equality Constraints

You cannot use equality constraints and integer constraints in the same problem. You
can try to work around this restriction by including two inequality constraints for each
linear equality constraint. For example, to try to include the constraint
3x1 – 2x2 = 5,

create two inequality constraints:
3x1 – 2x2 ≤ 5
3x1 – 2x2 ≥ 5.

To write these constraints in the form A x ≤ b, multiply the second inequality by -1:
–3x1 + 2x2 ≤ –5.

You can try to include the equality constraint using A = [3,-2;-3,2] and b = [5;-5].

Be aware that this procedure can fail; ga has difficulty with simultaneous integer and
equality constraints.
Example: Integer Programming with a Nonlinear Equality Constraint

This example attempts to locate the minimum of the Ackley function in five dimensions
with these constraints:

• x(1), x(3), and x(5) are integers.
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• norm(x) = 4.

The Ackley function, described briefly in “Resuming ga From the Final Population” on
page 5-57, is difficult to minimize. Adding integer and equality constraints increases
the difficulty.

To include the nonlinear equality constraint, give a small tolerance tol that allows the
norm of x to be within tol of 4. Without a tolerance, the nonlinear equality constraint is
never satisfied, and the solver does not realize when it has a feasible solution.

1 Write the expression norm(x) = 4 as two “less than zero” inequalities:
norm(x) - 4 ≤ 0
-(norm(x) - 4) ≤ 0.

2 Allow a small tolerance in the inequalities:
norm(x) - 4 - tol ≤ 0
-(norm(x) - 4) - tol ≤ 0.

3 Write a nonlinear inequality constraint function that implements these inequalities:

function [c, ceq] = eqCon(x)

ceq = [];

rad = 4;

tol = 1e-3;

confcnval = norm(x) - rad;

c = [confcnval - tol;-confcnval - tol];

4 Set options:

• StallGenLimit = 50 — Allow the solver to try for a while.
• TolFun = 1e-10 — Specify a stricter stopping criterion than usual.
• Generations = 300 — Allow more generations than default.
• PlotFcns = @gaplotbestfun — Observe the optimization.

opts = gaoptimset('StallGenLimit',50,'TolFun',1e-10,...

    'Generations',300,'PlotFcns',@gaplotbestfun);

5 Set lower and upper bounds to help the solver:

nVar = 5;

lb = -5*ones(1,nVar);

ub = 5*ones(1,nVar);

6 Solve the problem:

rng(1,'twister') % for reproducibility
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[x,fval,exitflag] = ga(@ackleyfcn,nVar,[],[],[],[], ...

    lb,ub,@eqCon,[1 3 5],opts);

Optimization terminated: stall generations limit exceeded

and constraint violation is less than options.TolCon.

7 Examine the solution:

x,fval,exitflag,norm(x)

x =

   -3.0000    0.8233    1.0000   -1.1503    2.0000
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fval =

    5.1119

exitflag =

     3

ans =

    4.0001

The odd x components are integers, as specified. The norm of x is 4, to within the
given relative tolerance of 1e-3.

8 Despite the positive exit flag, the solution is not the global optimum. Run the
problem again and examine the solution:

opts = gaoptimset(opts,'Display','off');

[x2,fval2,exitflag2] = ga(@ackleyfcn,nVar,[],[],[],[], ...

    lb,ub,@eqCon,[1 3 5],opts);
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Examine the second solution:

x2,fval2,exitflag2,norm(x2)

x2 =

   -1.0000   -0.9959   -2.0000    0.9960    3.0000

fval2 =

    4.2359
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exitflag2 =

     1

ans =

    3.9980

The second run gives a better solution (lower fitness function value). Again, the
odd x components are integers, and the norm of x2 is 4, to within the given relative
tolerance of 1e-3.

Be aware that this procedure can fail; ga has difficulty with simultaneous integer and
equality constraints.

Integer ga Algorithm

Integer programming with ga involves several modifications of the basic algorithm (see
“How the Genetic Algorithm Works” on page 5-18). For integer programming:

• Special creation, crossover, and mutation functions enforce variables to be integers.
For details, see Deep et al. [2].

• The genetic algorithm attempts to minimize a penalty function, not the fitness
function. The penalty function includes a term for infeasibility. This penalty function
is combined with binary tournament selection to select individuals for subsequent
generations. The penalty function value of a member of a population is:

• If the member is feasible, the penalty function is the fitness function.
• If the member is infeasible, the penalty function is the maximum fitness function

among feasible members of the population, plus a sum of the constraint violations
of the (infeasible) point.

For details of the penalty function, see Deb [1].
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Solving a Mixed Integer Engineering Design Problem Using the
Genetic Algorithm

This example shows how to solve a mixed integer engineering design problem using the
Genetic Algorithm (ga) solver in Global Optimization Toolbox.

The problem illustrated in this example involves the design of a stepped cantilever beam.
In particular, the beam must be able to carry a prescribed end load. We will solve a
problem to minimize the beam volume subject to various engineering design constraints.

In this example we will solve two bounded versions of the problem published in [1].

Stepped Cantilever Beam Design Problem

A stepped cantilever beam is supported at one end and a load is applied at the free end,
as shown in the figure below. The beam must be able to support the given load, , at
a fixed distance  from the support. Designers of the beam can vary the width ( ) and
height ( ) of each section. We will assume that each section of the cantilever has the
same length, .
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Volume of the beam

The volume of the beam, , is the sum of the volume of the individual sections

Constraints on the Design : 1 - Bending Stress

Consider a single cantilever beam, with the centre of coordinates at the centre of its cross
section at the free end of the beam. The bending stress at a point  in the beam is
given by the following equation

where  is the bending moment at ,  is the distance from the end load and  is the
area moment of inertia of the beam.
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Now, in the stepped cantilever beam shown in the figure, the maximum moment of each
section of the beam is , where  is the maximum distance from the end load, , for
each section of the beam. Therefore, the maximum stress for the -th section of the beam,

, is given by

where the maximum stress occurs at the edge of the beam, . The area moment of
inertia of the -th section of the beam is given by

Substituting this into the equation for  gives

The bending stress in each part of the cantilever should not exceed the maximum
allowable stress, . Consequently, we can finally state the five bending stress
constraints (one for each step of the cantilever)
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Constraints on the Design : 2 - End deflection

The end deflection of the cantilever can be calculated using Castigliano's second theorem,
which states that

where  is the deflection of the beam,  is the energy stored in the beam due to the
applied force, .

The energy stored in a cantilever beam is given by

where  is the moment of the applied force at .

Given that  for a cantilever beam, we can write the above equation as

where  is the area moment of inertia of the -th part of the cantilever. Evaluating the
integral gives the following expression for .

Applying Castigliano's theorem, the end deflection of the beam is given by

Now, the end deflection of the cantilever, , should be less than the maximum allowable
deflection, , which gives us the following constraint.



 Solving a Mixed Integer Engineering Design Problem Using the Genetic Algorithm

5-41

Constraints on the Design : 3 - Aspect ratio

For each step of the cantilever, the aspect ratio must not exceed a maximum allowable
aspect ratio, . That is,

 for 

State the Optimization Problem

We are now able to state the problem to find the optimal parameters for the stepped
cantilever beam given the stated constraints.

Let , , , , , , , ,  and

Minimize:

Subject to:
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The first step of the beam can only be machined to the nearest centimetre. That is,  and
 must be integer. The remaining variables are continuous. The bounds on the variables

are given below:-

Design Parameters for this Problem

For the problem we will solve in this example, the end load that the beam must support
is .

The beam lengths and maximum end deflection are:

• Total beam length, 
• Individual section of beam, 
• Maximum beam end deflection, 

The maximum allowed stress in each step of the beam, 

Young's modulus of each step of the beam, 
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Solve the Mixed Integer Optimization Problem

We now solve the problem described in State the Optimization Problem.

Define the Fitness and Constraint Functions

Examine the MATLAB files cantileverVolume.m and cantileverConstraints.m to
see how the fitness and constraint functions are implemented.

A note on the linear constraints: When linear constraints are specified to ga, you
normally specify them via the A, b, Aeq and beq inputs. In this case we have specified
them via the nonlinear constraint function. This is because later in this example, some
of the variables will become discrete. When there are discrete variables in the problem
it is far easier to specify linear constraints in the nonlinear constraint function. The
alternative is to modify the linear constraint matrices to work in the transformed
variable space, which is not trivial and maybe not possible. Also, in the mixed integer ga
solver, the linear constraints are not treated any differently to the nonlinear constraints
regardless of how they are specified.

Set the Bounds

Create vectors containing the lower bound (lb) and upper bound constraints (ub).

lb = [1 30 2.4 45 2.4 45 1 30 1 30];

ub = [5 65 3.1 60 3.1 60 5 65 5 65];

Set the Options

To obtain a more accurate solution, we increase the PopulationSize, and Generations
options from their default values, and decrease the EliteCount and TolFun options. These
settings cause ga to use a larger population (increased PopulationSize), to increase the
search of the design space (reduced EliteCount), and to keep going until its best member
changes by very little (small TolFun). We also specify a plot function to monitor the
penalty function value as ga progresses.

Note that there are a restricted set of ga options available when solving mixed integer
problems - see Global Optimization Toolbox User's Guide for more details.

opts = gaoptimset(...

    'PopulationSize', 150, ...

    'Generations', 200, ...

    'EliteCount', 10, ...

    'TolFun', 1e-8, ...
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    'PlotFcns', @gaplotbestf);

Call ga to Solve the Problem

We can now call ga to solve the problem. In the problem statement  and  are integer
variables. We specify this by passing the index vector [1 2] to ga after the nonlinear
constraint input and before the options input. We also seed and set the random number
generator here for reproducibility.

rng(0, 'twister');

[xbest, fbest, exitflag] = ga(@cantileverVolume, 10, [], [], [], [], ...

    lb, ub, @cantileverConstraints, [1 2], opts);

Optimization terminated: maximum number of generations exceeded.
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Analyze the Results

If a problem has integer constraints, ga reformulates it internally. In particular, the
fitness function in the problem is replaced by a penalty function which handles the
constraints. For feasible population members, the penalty function is the same as the
fitness function.

The solution returned from ga is displayed below. Note that the section nearest the
support is constrained to have a width ( ) and height ( ) which is an integer value and
this constraint has been honored by GA.

display(xbest);

xbest =

  Columns 1 through 7

    3.0000   60.0000    2.8326   56.6516    2.5725   51.4445    2.2126

  Columns 8 through 10

   44.2423    1.7512   34.9805

We can also ask ga to return the optimal volume of the beam.

fprintf('\nCost function returned by ga = %g\n', fbest);

Cost function returned by ga = 63196.6

Add Discrete Non-Integer Variable Constraints

The engineers are now informed that the second and third steps of the cantilever can
only have widths and heights that are chosen from a standard set. In this section, we
show how to add this constraint to the optimization problem. Note that with the addition
of this constraint, this problem is identical to that solved in [1].

First, we state the extra constraints that will be added to the above optimization

• The width of the second and third steps of the beam must be chosen from the
following set:- [2.4, 2.6, 2.8, 3.1] cm
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• The height of the second and third steps of the beam must be chosen from the
following set:- [45, 50, 55, 60] cm

To solve this problem, we need to be able to specify the variables , ,  and  as
discrete variables. To specify a component  as taking discrete values from the set

, optimize with  an integer variable taking values from 1 to , and use
 as the discrete value. To specify the range (1 to ), set 1 as the lower bound and 

as the upper bound.

So, first we transform the bounds on the discrete variables. Each set has 4 members
and we will map the discrete variables to an integer in the range [1, 4]. So, to map these
variables to be integer, we set the lower bound to 1 and the upper bound to 4 for each of
the variables.

lb = [1 30 1 1 1 1 1 30 1 30];

ub = [5 65 4 4 4 4 5 65 5 65];

Transformed (integer) versions of , ,  and  will now be passed to the
fitness and constraint functions when the ga solver is called. To evaluate these
functions correctly, , ,  and  need to be transformed to a member of the given
discrete set in these functions. To see how this is done, examine the MATLAB files
cantileverVolumeWithDisc.m, cantileverConstraintsWithDisc.m and
cantileverMapVariables.m.

Now we can call ga to solve the problem with discrete variables. In this case 
are integers. This means that we pass the index vector 1:6 to ga to define the integer
variables.

rng(0, 'twister');

[xbestDisc, fbestDisc, exitflagDisc] = ga(@cantileverVolumeWithDisc, ...

    10, [], [], [], [], lb, ub, @cantileverConstraintsWithDisc, 1:6, opts);

Optimization terminated: maximum number of generations exceeded.
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Analyze the Results

xbestDisc(3:6) are returned from ga as integers (i.e. in their transformed state). We
need to reverse the transform to retrieve the value in their engineering units.

xbestDisc = cantileverMapVariables(xbestDisc);

display(xbestDisc);

xbestDisc =

  Columns 1 through 7

    3.0000   60.0000    3.1000   55.0000    2.8000   50.0000    2.3036
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  Columns 8 through 10

   43.6153    1.7509   35.0071

As before, the solution returned from ga honors the constraint that  and  are
integers. We can also see that ,  are chosen from the set [2.4, 2.6, 2.8, 3.1] cm and ,

 are chosen from the set [45, 50, 55, 60] cm.

Recall that we have added additional constraints on the variables x(3), x(4), x(5) and
x(6). As expected, when there are additional discrete constraints on these variables,
the optimal solution has a higher minimum volume. Note further that the solution
reported in [1] has a minimum volume of  and that we find a solution which is
approximately the same as that reported in [1].

fprintf('\nCost function returned by ga = %g\n', fbestDisc);

Cost function returned by ga = 65226.5

Summary

This example illustrates how to use the genetic algorithm solver, ga, to solve a
constrained nonlinear optimization problem which has integer constraints. The
example also shows how to handle problems that have discrete variables in the problem
formulation.
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Nonlinear Constraint Solver Algorithms

In this section...

“Augmented Lagrangian Genetic Algorithm” on page 5-49
“Penalty Algorithm” on page 5-51

Augmented Lagrangian Genetic Algorithm

By default, the genetic algorithm uses the Augmented Lagrangian Genetic Algorithm
(ALGA) to solve nonlinear constraint problems without integer constraints. The
optimization problem solved by the ALGA algorithm is

min ( )
x

f x

such that

c x i m

ceq x i m mt

A x b

Aeq x beq

lb x ub

i

i

( ) ,

( ) ,

,

£ =

= = +

◊ £

◊ =

£ £

0 1

0 1

…

…

where c(x) represents the nonlinear inequality constraints, ceq(x) represents the equality
constraints, m is the number of nonlinear inequality constraints, and mt is the total
number of nonlinear constraints.

The Augmented Lagrangian Genetic Algorithm (ALGA) attempts to solve a nonlinear
optimization problem with nonlinear constraints, linear constraints, and bounds. In
this approach, bounds and linear constraints are handled separately from nonlinear
constraints. A subproblem is formulated by combining the fitness function and nonlinear
constraint function using the Lagrangian and the penalty parameters. A sequence of
such optimization problems are approximately minimized using the genetic algorithm
such that the linear constraints and bounds are satisfied.

A subproblem formulation is defined as
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where

• The components λi of the vector λ are nonnegative and are known as Lagrange
multiplier estimates

• The elements si of the vector s are nonnegative shifts
• ρ is the positive penalty parameter.

The algorithm begins by using an initial value for the penalty parameter
(InitialPenalty).

The genetic algorithm minimizes a sequence of subproblems, each of which is an
approximation of the original problem. Each subproblem has a fixed value of λ, s, and
ρ. When the subproblem is minimized to a required accuracy and satisfies feasibility
conditions, the Lagrangian estimates are updated. Otherwise, the penalty parameter
is increased by a penalty factor (PenaltyFactor). This results in a new subproblem
formulation and minimization problem. These steps are repeated until the stopping
criteria are met.

Each subproblem solution represents one generation. The number of function evaluations
per generation is therefore much higher when using nonlinear constraints than
otherwise.

Choose the Augmented Lagrangian algorithm by setting the NonlinConAlgorithm
option to 'auglag' using gaoptimset.

For a complete description of the algorithm, see the following references:
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Constraints and Simple Bounds,” Mathematics of Computation, Volume 66,
Number 217, pages 261–288, 1997.

Penalty Algorithm

The penalty algorithm is similar to the “Integer ga Algorithm” on page 5-35. In its
evaluation of the fitness of an individual, ga computes a penalty value as follows:

• If the individual is feasible, the penalty function is the fitness function.
• If the individual is infeasible, the penalty function is the maximum fitness function

among feasible members of the population, plus a sum of the constraint violations of
the (infeasible) individual.

For details of the penalty function, see Deb [1].

Choose the penalty algorithm by setting the NonlinConAlgorithm option to
'penalty' using gaoptimset. When you make this choice, ga solves the constrained
optimization problem as follows.

1 ga defaults to the @gacreationnonlinearfeasible creation function. This
function attempts to create a feasible population with respect to all constraints. ga
creates enough individuals to match the PopulationSize option. For details, see
“Penalty Algorithm” on page 10-48.

2 ga overrides your choice of selection function, and uses @selectiontournament
with two individuals per tournament.

3 ga proceeds according to “How the Genetic Algorithm Works” on page 5-18, using the
penalty function as the fitness measure.
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Create Custom Plot Function

In this section...

“About Custom Plot Functions” on page 5-52
“Creating the Custom Plot Function” on page 5-52
“Using the Plot Function” on page 5-53
“How the Plot Function Works” on page 5-54

About Custom Plot Functions

If none of the plot functions that come with the software is suitable for the output you
want to plot, you can write your own custom plot function, which the genetic algorithm
calls at each generation to create the plot. This example shows how to create a plot
function that displays the change in the best fitness value from the previous generation
to the current generation.

Creating the Custom Plot Function

To create the plot function for this example, copy and paste the following code into a new
file in the MATLAB Editor.

function state = gaplotchange(options, state, flag)

% GAPLOTCHANGE Plots the logarithmic change in the best score from the 

% previous generation.

%   

persistent last_best % Best score in the previous generation

if(strcmp(flag,'init')) % Set up the plot

    xlim([1,options.Generations]);

    axx = gca;

    axx.Yscale = 'log';

    hold on;

    xlabel Generation

    title('Log Absolute Change in Best Fitness Value')

end

best = min(state.Score); % Best score in the current generation

if state.Generation == 0 % Set last_best to best.
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    last_best = best;

else

 change = last_best - best; % Change in best score 

 last_best = best;

    if change > 0 % Plot only when the fitness improves

        plot(state.Generation,change,'xr');

    end

end

Then save the file as gaplotchange.m in a folder on the MATLAB path.

Using the Plot Function

To use the custom plot function, select Custom in the Plot functions pane and enter
@gaplotchange in the field to the right. To compare the custom plot with the best
fitness value plot, also select Best fitness.

Now, if you run the example described in “Minimize Rastrigin's Function” on page 5-6,
the tool displays plots similar to those shown in the following figure.
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The plot only shows changes that are greater than 0, which are improvements in best
fitness. The logarithmic scale enables you to see small changes in the best fitness
function that the upper plot does not reveal.

How the Plot Function Works

The plot function uses information contained in the following structures, which the
genetic algorithm passes to the function as input arguments:

• options — The current options settings
• state — Information about the current generation
• flag — String indicating the current status of the algorithm
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The most important lines of the plot function are the following:

• persistent last_best

Creates the persistent variable last_best—the best score in the previous
generation. Persistent variables are preserved over multiple calls to the plot function.

• xlim([1,options.Generations]);

axx = gca;

axx.Yscale = 'log';

Sets up the plot before the algorithm starts. options.Generations is the maximum
number of generations.

• best = min(state.Score)

The field state.Score contains the scores of all individuals in the current
population. The variable best is the minimum score. For a complete description
of the fields of the structure state, see “Structure of the Plot Functions” on page
10-31.

• change = last_best - best

The variable change is the best score at the previous generation minus the best score
in the current generation.

• if change > 0

Plot only if there is a change in the best fitness.
• plot(state.Generation,change,'xr')

Plots the change at the current generation, whose number is contained in
state.Generation.

The code for gaplotchange contains many of the same elements as the code for
gaplotbestf, the function that creates the best fitness plot.
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Reproduce Results in Optimization App

To reproduce the results of the last run of the genetic algorithm, select the Use random
states from previous run check box. This resets the states of the random number
generators used by the algorithm to their previous values. If you do not change any other
settings in the Optimization app, the next time you run the genetic algorithm, it returns
the same results as the previous run.

Normally, you should leave Use random states from previous run unselected to get
the benefit of randomness in the genetic algorithm. Select the Use random states from
previous run check box if you want to analyze the results of that particular run or show
the exact results to others. After the algorithm has run, you can clear your results using
the Clear Status button in the Run solver settings.

Note: If you select Include information needed to resume this run, then selecting
Use random states from previous run has no effect on the initial population created
when you import the problem and run the genetic algorithm on it. The latter option is
only intended to reproduce results from the beginning of a new run, not from a resumed
run.



 Resume ga

5-57

Resume ga

In this section...

“Resuming ga From the Final Population” on page 5-57
“Resuming ga From a Previous Run” on page 5-61

Resuming ga From the Final Population

The following example shows how export a problem so that when you import it and click
Start, the genetic algorithm resumes from the final population saved with the exported
problem. To run the example, enter the following in the Optimization app:

1 Set Fitness function to @ackleyfcn, which computes Ackley's function, a test
function provided with the software.

2 Set Number of variables to 10.
3 Select Best fitness in the Plot functions pane.
4 Click Start.

This displays the following plot, or similar.
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Suppose you want to experiment by running the genetic algorithm with other options
settings, and then later restart this run from its final population with its current options
settings. You can do this using the following steps:

1 Click Export to Workspace.
2 In the dialog box that appears,

• Select Export problem and options to a MATLAB structure named.
• Enter a name for the problem and options, such as ackley_uniform, in the text

field.
• Select Include information needed to resume this run.
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The dialog box should now appear as in the following figure.

3 Click OK.

This exports the problem and options to a structure in the MATLAB workspace. You can
view the structure in the MATLAB Command Window by entering

ackley_uniform

ackley_uniform = 

    fitnessfcn: @ackleyfcn

         nvars: 10

         Aineq: []

         bineq: []

           Aeq: []

           beq: []

            lb: []

            ub: []

       nonlcon: []

        intcon: []

      rngstate: []

        solver: 'ga'

       options: [1x1 struct]

After running the genetic algorithm with different options settings or even a different
fitness function, you can restore the problem as follows:
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1 Select Import Problem from the File menu. This opens the dialog box shown in the
following figure.

2 Select ackley_uniform.
3 Click Import.

This sets the Initial population and Initial scores fields in the Population panel
to the final population of the run before you exported the problem. All other options are
restored to their setting during that run. When you click Start, the genetic algorithm
resumes from the saved final population. The following figure shows the best fitness plots
from the original run and the restarted run.
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Note If, after running the genetic algorithm with the imported problem, you want
to restore the genetic algorithm's default behavior of generating a random initial
population, delete the population in the Initial population field.

The version of Ackley's function in the toolbox differs from the published version of
Ackley's function in Ackley [1]. The toolbox version has another exponential applied,
leading to flatter regions, so a more difficult optimization problem.

References

[1] Ackley, D. H. A connectionist machine for genetic hillclimbing. Kluwer Academic
Publishers, Boston, 1987.

Resuming ga From a Previous Run

By default, ga creates a new initial population each time you run it. However, you
might get better results by using the final population from a previous run as the initial
population for a new run. To do so, you must have saved the final population from the
previous run by calling ga with the syntax

[x,fval,exitflag,output,final_pop] = ga(@fitnessfcn, nvars);

The last output argument is the final population. To run ga using final_pop as the
initial population, enter
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options = gaoptimset('InitialPop', final_pop);

[x,fval,exitflag,output,final_pop2] = ... 

  ga(@fitnessfcn,nvars,[],[],[],[],[],[],[],options);

You can then use final_pop2, the final population from the second run, as the initial
population for a third run.

In Optimization app, you can choose to export a problem in a way that lets you resume
the run. Simply check the box Include information needed to resume this run when
exporting the problem.

This saves the final population, which becomes the initial population when imported.

If you want to run a problem that was saved with the final population, but would rather
not use the initial population, simply delete or otherwise change the initial population in
the Options > Population pane.
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Options and Outputs

In this section...

“Running ga with the Default Options” on page 5-63
“Setting Options at the Command Line” on page 5-64
“Additional Output Arguments” on page 5-66

Running ga with the Default Options

To run the genetic algorithm with the default options, call ga with the syntax

[x fval] = ga(@fitnessfun, nvars)

The input arguments to ga are

• @fitnessfun — A function handle to the file that computes the fitness function.
“Compute Objective Functions” on page 2-2 explains how to write this file.

• nvars — The number of independent variables for the fitness function.

The output arguments are

• x — The final point
• fval — The value of the fitness function at x

For a description of additional input and output arguments, see the reference page for
ga.

You can run the example described in “Minimize Rastrigin's Function” on page 5-6 from
the command line by entering

rng(1,'twister') % for reproducibility

[x fval] = ga(@rastriginsfcn, 2)

This returns

Optimization terminated:

 average change in the fitness value less than options.TolFun.

x =

   -1.0421   -1.0018
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fval =

    2.4385

Setting Options at the Command Line

You can specify any of the options that are available for ga by passing an options
structure as an input argument to ga using the syntax

[x fval] = ga(@fitnessfun,nvars,[],[],[],[],[],[],[],options)

This syntax does not specify any linear equality, linear inequality, or nonlinear
constraints.

You create the options structure using the function gaoptimset.

options = gaoptimset(@ga)

This returns the structure options with the default values for its fields.

    options = 

    

            PopulationType: 'doubleVector'

              PopInitRange: []

            PopulationSize: '50 when numberOfVariables <= 5, else 200'

                EliteCount: '0.05*PopulationSize'

         CrossoverFraction: 0.8000

            ParetoFraction: []

        MigrationDirection: 'forward'

         MigrationInterval: 20

         MigrationFraction: 0.2000

               Generations: '100*numberOfVariables'

                 TimeLimit: Inf

              FitnessLimit: -Inf

             StallGenLimit: 50

                 StallTest: 'averageChange'

            StallTimeLimit: Inf

                    TolFun: 1.0000e-06

                    TolCon: 1.0000e-03

         InitialPopulation: []

             InitialScores: []

        NonlinConAlgorithm: 'auglag'

            InitialPenalty: 10

             PenaltyFactor: 100

              PlotInterval: 1
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               CreationFcn: @gacreationuniform

         FitnessScalingFcn: @fitscalingrank

              SelectionFcn: @selectionstochunif

              CrossoverFcn: @crossoverscattered

               MutationFcn: {[@mutationgaussian]  [1]  [1]}

        DistanceMeasureFcn: []

                 HybridFcn: []

                   Display: 'final'

                  PlotFcns: []

                OutputFcns: []

                Vectorized: 'off'

               UseParallel: 0

The function ga uses these default values if you do not pass in options as an input
argument.

The value of each option is stored in a field of the options structure, such as
options.PopulationSize. You can display any of these values by entering options
followed by a period and the name of the field. For example, to display the size of the
population for the genetic algorithm, enter

options.PopulationSize

ans =

50 when numberOfVariables <= 5, else 200

To create an options structure with a field value that is different from the default — for
example to set PopulationSize to 100 instead of its default value 50 — enter

options = gaoptimset('PopulationSize',100)

This creates the options structure with all values set to their defaults except for
PopulationSize, which is set to 100.

If you now enter,

ga(@fitnessfun,nvars,[],[],[],[],[],[],[],options)

ga runs the genetic algorithm with a population size of 100.

If you subsequently decide to change another field in the options structure, such as
setting PlotFcns to @gaplotbestf, which plots the best fitness function value at each
generation, call gaoptimset with the syntax
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options = gaoptimset(options,'PlotFcns',@plotbestf)

This preserves the current values of all fields of options except for PlotFcns, which
is changed to @plotbestf. Note that if you omit the input argument options,
gaoptimset resets PopulationSize to its default value 20.

You can also set both PopulationSize and PlotFcns with the single command

options = gaoptimset('PopulationSize',100,'PlotFcns',@plotbestf)

Additional Output Arguments

To get more information about the performance of the genetic algorithm, you can call ga
with the syntax

[x,fval,exitflag,output,population,scores] = ga(@fitnessfcn, nvars)

Besides x and fval, this function returns the following additional output arguments:

• exitflag — Integer value corresponding to the reason the algorithm terminated
• output — Structure containing information about the performance of the algorithm

at each generation
• population — Final population
• scores — Final scores

See the ga reference page for more information about these arguments.
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Use Exported Options and Problems

As an alternative to creating an options structure using gaoptimset, you can set the
values of options in the Optimization app and then export the options to a structure
in the MATLAB workspace, as described in the “Importing and Exporting Your Work”
section of the Optimization Toolbox documentation. If you export the default options
in the Optimization app, the resulting structure options has the same settings as the
default structure returned by the command

options = gaoptimset(@ga)

except that the option 'Display' defaults to 'off' in an exported structure, and is
'final' in the default at the command line.

If you export a problem structure, ga_problem, from the Optimization app, you can
apply ga to it using the syntax

[x,fval] = ga(ga_problem)

The problem structure contains the following fields:

• fitnessfcn — Fitness function
• nvars — Number of variables for the problem
• Aineq — Matrix for inequality constraints
• Bineq — Vector for inequality constraints
• Aeq — Matrix for equality constraints
• Beq — Vector for equality constraints
• LB — Lower bound on x
• UB — Upper bound on x
• nonlcon — Nonlinear constraint function
• options — Options structure
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Reproduce Results

Because the genetic algorithm is stochastic—that is, it makes random choices—you get
slightly different results each time you run the genetic algorithm. The algorithm uses the
default MATLAB pseudorandom number stream. For more information about random
number streams, see RandStream. Each time ga calls the stream, its state changes. So
that the next time ga calls the stream, it returns a different random number. This is why
the output of ga differs each time you run it.

If you need to reproduce your results exactly, you can call ga with an output argument
that contains the current state of the default stream, and then reset the state to this
value before running ga again. For example, to reproduce the output of ga applied to
Rastrigin's function, call ga with the syntax

rng(1,'twister') % for reproducibility

[x fval exitflag output] = ga(@rastriginsfcn, 2);

Suppose the results are

x,fval

x =

   -1.0421   -1.0018

fval =

    2.4385

The state of the stream is stored in output.rngstate:

output

output = 

      problemtype: 'unconstrained'

         rngstate: [1x1 struct]

      generations: 52

        funccount: 2650

          message: 'Optimization terminated: average change in the fitness value less...'

    maxconstraint: []

To reset the state, enter

stream = RandStream.getGlobalStream;

stream.State = output.rngstate.state;



 Reproduce Results

5-69

If you now run ga a second time, you get the same results as before:

[x fval exitflag output] = ga(@rastriginsfcn, 2)

Optimization terminated: average change in the fitness value less than options.TolFun.

x =

   -1.0421   -1.0018

fval =

    2.4385

exitflag =

     1

output = 

      problemtype: 'unconstrained'

         rngstate: [1x1 struct]

      generations: 52

        funccount: 2650

          message: 'Optimization terminated: average change in the fitness value less...'

    maxconstraint: []

You can reproduce your run in the Optimization app by checking the box Use random
states from previous run in the Run solver and view results section.

Note If you do not need to reproduce your results, it is better not to set the state of the
stream, so that you get the benefit of the randomness in the genetic algorithm.
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Run ga from a File

The command-line interface enables you to run the genetic algorithm many
times, with different options settings, using a file. For example, you can run the
genetic algorithm with different settings for Crossover fraction to see which one
gives the best results. The following code runs the function ga 21 times, varying
options.CrossoverFraction from 0 to 1 in increments of 0.05, and records the
results.

options = gaoptimset('Generations',300,'Display','none');

rng default % for reproducibility

record=[];

for n=0:.05:1

  options = gaoptimset(options,'CrossoverFraction',n);

  [x fval]=ga(@rastriginsfcn,2,[],[],[],[],[],[],[],options);

  record = [record; fval];

end

You can plot the values of fval against the crossover fraction with the following
commands:

plot(0:.05:1, record);

xlabel('Crossover Fraction');

ylabel('fval')

The following plot appears.
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The plot suggests that you get the best results by setting
options.CrossoverFraction to a value somewhere between 0.4 and 0.8.

You can get a smoother plot of fval as a function of the crossover fraction by running
ga 20 times and averaging the values of fval for each crossover fraction. The following
figure shows the resulting plot.
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This plot also suggests the range of best choices for options.CrossoverFraction is
0.4 to 0.8.
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Population Diversity

In this section...

“Importance of Population Diversity” on page 5-73
“Setting the Initial Range” on page 5-73
“Linearly Constrained Population and Custom Plot Function” on page 5-77
“Setting the Population Size” on page 5-82

Importance of Population Diversity

One of the most important factors that determines the performance of the genetic
algorithm performs is the diversity of the population. If the average distance between
individuals is large, the diversity is high; if the average distance is small, the diversity is
low. Getting the right amount of diversity is a matter of start and error. If the diversity is
too high or too low, the genetic algorithm might not perform well.

This section explains how to control diversity by setting the Initial range of the
population. “Setting the Amount of Mutation” on page 5-88 describes how the amount
of mutation affects diversity.

This section also explains how to set the population size.

Setting the Initial Range

By default, ga creates a random initial population using a creation function. You can
specify the range of the vectors in the initial population in the Initial range field in
Population options.

Note The initial range restricts the range of the points in the initial population by
specifying the lower and upper bounds. Subsequent generations can contain points whose
entries do not lie in the initial range. Set upper and lower bounds for all generations in
the Bounds fields in the Constraints panel.

If you know approximately where the solution to a problem lies, specify the initial range
so that it contains your guess for the solution. However, the genetic algorithm can find
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the solution even if it does not lie in the initial range, if the population has enough
diversity.

The following example shows how the initial range affects the performance of the genetic
algorithm. The example uses Rastrigin's function, described in “Minimize Rastrigin's
Function” on page 5-6. The minimum value of the function is 0, which occurs at the
origin.

To run the example, open the ga solver in the Optimization app by entering
optimtool('ga') at the command line. Set the following:

• Set Fitness function to @rastriginsfcn.
• Set Number of variables to 2.
• Select Best fitness in the Plot functions pane of the Options pane.
• Select Distance in the Plot functions pane.
• Set Initial range in the Population pane of the Options pane to [1;1.1].

Click Start in Run solver and view results. Although the results of genetic algorithm
computations are random, your results are similar to the following figure, with a best
fitness function value of approximately 2.
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The upper plot, which displays the best fitness at each generation, shows little progress
in lowering the fitness value. The lower plot shows the average distance between
individuals at each generation, which is a good measure of the diversity of a population.
For this setting of initial range, there is too little diversity for the algorithm to make
progress.

Next, try setting Initial range to [1;100] and running the algorithm. This time the
results are more variable. You might obtain a plot with a best fitness value of about 7, as
in the following plot. You might obtain different results.
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This time, the genetic algorithm makes progress, but because the average distance
between individuals is so large, the best individuals are far from the optimal solution.

Finally, set Initial range to [1;2] and run the genetic algorithm. Again, there is
variability in the result, but you might obtain a result similar to the following figure. Run
the optimization several times, and you eventually obtain a final point near [0;0], with
a fitness function value near 0.
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The diversity in this case is better suited to the problem, so ga usually returns a better
result than in the previous two cases.

Linearly Constrained Population and Custom Plot Function

This example shows how the default creation function for linearly constrained problems,
gacreationlinearfeasible, creates a well-dispersed population that satisfies linear
constraints and bounds. It also contains an example of a custom plot function.

The problem uses the objective function in lincontest6.m, a quadratic:
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To see code for the function, enter type lincontest6 at the command line. The
constraints are three linear inequalities:
x1 + x2 ≤ 2,
–x1 + 2x2 ≤ 2,
2x1 + x2 ≤ 3.

Also, the variables xi are restricted to be positive.

1 Create a custom plot function file by cutting and pasting the following code into a
new function file in the MATLAB Editor:

function state = gaplotshowpopulation2(unused,state,flag,fcn)

% This plot function works in 2-d only

if size(state.Population,2) > 2

    return;

end

if nargin < 4 % check to see if fitness function exists

    fcn = [];

end

% Dimensions to plot

dimensionsToPlot = [1 2];

switch flag

    % Plot initialization

    case 'init'

        pop = state.Population(:,dimensionsToPlot);

        plotHandle = plot(pop(:,1),pop(:,2),'*');

        set(plotHandle,'Tag','gaplotshowpopulation2')

        title('Population plot in two dimension',...

                    'interp','none')

        xlabelStr = sprintf('%s %s','Variable ',...

                    num2str(dimensionsToPlot(1)));

        ylabelStr = sprintf('%s %s','Variable ',...

                    num2str(dimensionsToPlot(2)));

        xlabel(xlabelStr,'interp','none');

        ylabel(ylabelStr,'interp','none');

        hold on;

       

        % plot the inequalities

        plot([0 1.5],[2 0.5],'m-.') %  x1 + x2 <= 2
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        plot([0 1.5],[1 3.5/2],'m-.'); % -x1 + 2*x2 <= 2

        plot([0 1.5],[3 0],'m-.'); % 2*x1 + x2 <= 3

        % plot lower bounds

        plot([0 0], [0 2],'m-.'); % lb = [ 0 0];

        plot([0 1.5], [0 0],'m-.'); % lb = [ 0 0];

        set(gca,'xlim',[-0.7,2.2])

        set(gca,'ylim',[-0.7,2.7])

        

        % Contour plot the objective function

        if ~isempty(fcn) % if there is a fitness function

            range = [-0.5,2;-0.5,2];

            pts = 100;

            span = diff(range')/(pts - 1);

            x = range(1,1): span(1) : range(1,2);

            y = range(2,1): span(2) : range(2,2);

            pop = zeros(pts * pts,2);

            values = zeros(pts,1);

            k = 1;

            for i = 1:pts

                for j = 1:pts

                    pop(k,:) = [x(i),y(j)];

                    values(k) = fcn(pop(k,:));

                    k = k + 1;

                end

            end

            values = reshape(values,pts,pts);

            contour(x,y,values);

            colorbar

        end

        % Pause for three seconds to view the initial plot

        pause(3);

    case 'iter'

        pop = state.Population(:,dimensionsToPlot);

        plotHandle = findobj(get(gca,'Children'),'Tag',...

                     'gaplotshowpopulation2');

        set(plotHandle,'Xdata',pop(:,1),'Ydata',pop(:,2));

end

The custom plot function plots the lines representing the linear inequalities
and bound constraints, plots level curves of the fitness function, and plots the
population as it evolves. This plot function expects to have not only the usual
inputs (options,state,flag), but also a function handle to the fitness function,
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@lincontest6 in this example. To generate level curves, the custom plot function
needs the fitness function.

2 At the command line, enter the constraints as a matrix and vectors:

A = [1,1;-1,2;2,1]; b = [2;2;3]; lb = zeros(2,1);

3 Set options to use gaplotshowpopulation2, and pass in @lincontest6 as the
fitness function handle:

options = gaoptimset('PlotFcns',...

          {{@gaplotshowpopulation2,@lincontest6}});

4 Run the optimization using options:

[x,fval] = ga(@lincontest6,2,A,b,[],[],lb,[],[],options);

A plot window appears showing the linear constraints, bounds, level curves of the
objective function, and initial distribution of the population:
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You can see that the initial population is biased to lie on the constraints. This bias exists
when there are linear constraints.

The population eventually concentrates around the minimum point:
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Setting the Population Size

The Population size field in Population options determines the size of the population
at each generation. Increasing the population size enables the genetic algorithm
to search more points and thereby obtain a better result. However, the larger the
population size, the longer the genetic algorithm takes to compute each generation.

Note You should set Population size to be at least the value of Number of variables,
so that the individuals in each population span the space being searched.
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You can experiment with different settings for Population size that return good results
without taking a prohibitive amount of time to run.
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Fitness Scaling

In this section...

“Scaling the Fitness Scores” on page 5-84
“Comparing Rank and Top Scaling” on page 5-86

Scaling the Fitness Scores

Fitness scaling converts the raw fitness scores that are returned by the fitness function
to values in a range that is suitable for the selection function. The selection function
uses the scaled fitness values to select the parents of the next generation. The selection
function assigns a higher probability of selection to individuals with higher scaled values.

The range of the scaled values affects the performance of the genetic algorithm. If the
scaled values vary too widely, the individuals with the highest scaled values reproduce
too rapidly, taking over the population gene pool too quickly, and preventing the genetic
algorithm from searching other areas of the solution space. On the other hand, if the
scaled values vary only a little, all individuals have approximately the same chance of
reproduction and the search will progress very slowly.

The default fitness scaling option, Rank, scales the raw scores based on the rank of each
individual instead of its score. The rank of an individual is its position in the sorted
scores: the rank of the most fit individual is 1, the next most fit is 2, and so on. The rank
scaling function assigns scaled values so that

• The scaled value of an individual with rank n is proportional to 1 / n .

• The sum of the scaled values over the entire population equals the number of parents
needed to create the next generation.

Rank fitness scaling removes the effect of the spread of the raw scores.

The following plot shows the raw scores of a typical population of 20 individuals, sorted
in increasing order.
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The following plot shows the scaled values of the raw scores using rank scaling.
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Because the algorithm minimizes the fitness function, lower raw scores have higher
scaled values. Also, because rank scaling assigns values that depend only on an
individual's rank, the scaled values shown would be the same for any population of size
20 and number of parents equal to 32.



5 Using the Genetic Algorithm

5-86

Comparing Rank and Top Scaling

To see the effect of scaling, you can compare the results of the genetic algorithm using
rank scaling with one of the other scaling options, such as Top. By default, top scaling
assigns 40 percent of the fittest individuals to the same scaled value and assigns the rest
of the individuals to value 0. Using the default selection function, only 40 percent of the
fittest individuals can be selected as parents.

The following figure compares the scaled values of a population of size 20 with number of
parents equal to 32 using rank and top scaling.
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Because top scaling restricts parents to the fittest individuals, it creates less diverse
populations than rank scaling. The following plot compares the variances of distances
between individuals at each generation using rank and top scaling.
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Vary Mutation and Crossover

In this section...

“Setting the Amount of Mutation” on page 5-88
“Setting the Crossover Fraction” on page 5-90
“Comparing Results for Varying Crossover Fractions” on page 5-95

Setting the Amount of Mutation

The genetic algorithm applies mutations using the option that you specify on the
Mutation function pane. The default mutation option, Gaussian, adds a random
number, or mutation, chosen from a Gaussian distribution, to each entry of the parent
vector. Typically, the amount of mutation, which is proportional to the standard
deviation of the distribution, decreases at each new generation. You can control the
average amount of mutation that the algorithm applies to a parent in each generation
through the Scale and Shrink options:

• Scale controls the standard deviation of the mutation at the first generation, which
is Scale multiplied by the range of the initial population, which you specify by the
Initial range option.

• Shrink controls the rate at which the average amount of mutation decreases. The
standard deviation decreases linearly so that its final value equals 1 – Shrink times
its initial value at the first generation. For example, if Shrink has the default value
of 1, then the amount of mutation decreases to 0 at the final step.

You can see the effect of mutation by selecting the plot options Distance and Range,
and then running the genetic algorithm on a problem such as the one described in
“Minimize Rastrigin's Function” on page 5-6. The following figure shows the plot after
setting the random number generator.

rng default % for reproducibility

options = gaoptimset('PlotFcns',{@gaplotdistance,@gaplotrange},...

    'StallGenLimit',200); % to get a long run

[x,fval] = ga(@rastriginsfcn,2,[],[],[],[],[],[],[],options);
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The upper plot displays the average distance between points in each generation. As the
amount of mutation decreases, so does the average distance between individuals, which
is approximately 0 at the final generation. The lower plot displays a vertical line at each
generation, showing the range from the smallest to the largest fitness value, as well
as mean fitness value. As the amount of mutation decreases, so does the range. These
plots show that reducing the amount of mutation decreases the diversity of subsequent
generations.

For comparison, the following figure shows the plots for Distance and Range when you
set Shrink to 0.5.

options = gaoptimset(options,'MutationFcn',{@mutationgaussian,1,.5});

[x,fval] = ga(@rastriginsfcn,2,[],[],[],[],[],[],[],options);
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With Shrink set to 0.5, the average amount of mutation decreases by a factor of 1/2 by
the final generation. As a result, the average distance between individuals decreases less
than before.

Setting the Crossover Fraction

The Crossover fraction field, in the Reproduction options, specifies the fraction of
each population, other than elite children, that are made up of crossover children. A
crossover fraction of 1 means that all children other than elite individuals are crossover
children, while a crossover fraction of 0 means that all children are mutation children.
The following example show that neither of these extremes is an effective strategy for
optimizing a function.
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The example uses the fitness function whose value at a point is the sum of the absolute
values of the coordinates at the points. That is,

f x x x x x xn n1 2 1 2, ,..., .( ) = + + +L

You can define this function as an anonymous function by setting Fitness function to

@(x) sum(abs(x))

To run the example,

• Set Fitness function to @(x) sum(abs(x)).
• Set Number of variables to 10.
• Set Initial range to [-1; 1].
• Select Best fitness and Distance in the Plot functions pane.

Run the example with the default value of 0.8 for Crossover fraction, in the Options
> Reproduction pane. For reproducibility, switch to the command line and enter

rng(14,'twister')

Switch back to Optimization app, and click Run solver and view results > Start. This
returns the best fitness value of approximately 0.0799 and displays the following plots.
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Crossover Without Mutation

To see how the genetic algorithm performs when there is no mutation, set Crossover
fraction to 1.0 and click Start. This returns the best fitness value of approximately .66
and displays the following plots.
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In this case, the algorithm selects genes from the individuals in the initial population
and recombines them. The algorithm cannot create any new genes because there is no
mutation. The algorithm generates the best individual that it can using these genes at
generation number 8, where the best fitness plot becomes level. After this, it creates
new copies of the best individual, which are then are selected for the next generation. By
generation number 17, all individuals in the population are the same, namely, the best
individual. When this occurs, the average distance between individuals is 0. Since the
algorithm cannot improve the best fitness value after generation 8, it stalls after 50 more
generations, because Stall generations is set to 50.
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Mutation Without Crossover

To see how the genetic algorithm performs when there is no crossover, set Crossover
fraction to 0 and click Start. This returns the best fitness value of approximately 3 and
displays the following plots.

In this case, the random changes that the algorithm applies never improve the fitness
value of the best individual at the first generation. While it improves the individual
genes of other individuals, as you can see in the upper plot by the decrease in the mean
value of the fitness function, these improved genes are never combined with the genes of
the best individual because there is no crossover. As a result, the best fitness plot is level
and the algorithm stalls at generation number 50.
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Comparing Results for Varying Crossover Fractions

The example deterministicstudy.m, which is included in the software, compares
the results of applying the genetic algorithm to Rastrigin's function with Crossover
fraction set to 0, .2, .4, .6, .8, and 1. The example runs for 10 generations. At each
generation, the example plots the means and standard deviations of the best fitness
values in all the preceding generations, for each value of the Crossover fraction.

To run the example, enter

deterministicstudy

at the MATLAB prompt. When the example is finished, the plots appear as in the
following figure.
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The lower plot shows the means and standard deviations of the best fitness values over
10 generations, for each of the values of the crossover fraction. The upper plot shows a
color-coded display of the best fitness values in each generation.

For this fitness function, setting Crossover fraction to 0.8 yields the best result.
However, for another fitness function, a different setting for Crossover fraction might
yield the best result.
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Global vs. Local Minima Using ga

In this section...

“Searching for a Global Minimum” on page 5-97
“Running the Genetic Algorithm on the Example” on page 5-99

Searching for a Global Minimum

Sometimes the goal of an optimization is to find the global minimum or maximum of a
function—a point where the function value is smaller or larger at any other point in the
search space. However, optimization algorithms sometimes return a local minimum—
a point where the function value is smaller than at nearby points, but possibly greater
than at a distant point in the search space. The genetic algorithm can sometimes
overcome this deficiency with the right settings.

As an example, consider the following function
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The following figure shows a plot of the function.
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Code for generating the figure

t = -10:.1:103;

for ii = 1:length(t)

    y(ii) = two_min(t(ii));

end

plot(t,y)

The function has two local minima, one at x = 0, where the function value is –1, and the
other at x = 101, where the function value is –1 – 1/e. Since the latter value is smaller,
the global minimum occurs at x = 101.
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Running the Genetic Algorithm on the Example

To run the genetic algorithm on this example,

1 Copy and paste the following code into a new file in the MATLAB Editor.

function y = two_min(x)

if x <= 100

    y = -exp(-(x/100).^2);

else

    y = -exp(-1) + (x-100)*(x-102);

end

2 Save the file as two_min.m in a folder on the MATLAB path.
3 In the Optimization app,

• Set Fitness function to @two_min.
• Set Number of variables to 1.
• Click Start.

The genetic algorithm returns a point very close to the local minimum at x = 0.

The following custom plot shows why the algorithm finds the local minimum rather than
the global minimum. The plot shows the range of individuals in each generation and the
population mean.
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Code for Creating the Figure

function state = gaplot1drange(options,state,flag)

%gaplot1drange Plots the mean and the range of the population.

%   STATE = gaplot1drange(OPTIONS,STATE,FLAG) plots the mean and the range

%   (highest and the lowest) of individuals (1-D only).  

%

%   Example:

%   Create an options structure that uses gaplot1drange

%   as the plot function

%     options = gaoptimset('PlotFcns',@gaplot1drange);

%   Copyright 2012-2014 The MathWorks, Inc.
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if isinf(options.Generations) || size(state.Population,2) > 1

    title('Plot Not Available','interp','none');

    return;

end

generation = state.Generation;

score = state.Population;

smean = mean(score);

Y = smean;

L = smean - min(score);

U = max(score) - smean;

switch flag

    case 'init'

        set(gca,'xlim',[1,options.Generations+1]);

        plotRange = errorbar(generation,Y,L,U);

        set(plotRange,'Tag','gaplot1drange');

        title('Range of Population, Mean','interp','none')

        xlabel('Generation','interp','none')

    case 'iter'

        plotRange = findobj(get(gca,'Children'),'Tag','gaplot1drange');

        newX = [get(plotRange,'Xdata') generation];

        newY = [get(plotRange,'Ydata') Y];

        newL = [get(plotRange,'Ldata'); L];

        newU = [get(plotRange,'Udata'); U];       

        set(plotRange, 'Xdata',newX,'Ydata',newY,'Ldata',newL,'Udata',newU);

end

Note that all individuals lie between –70 and 70. The population never explores points
near the global minimum at x = 101.

One way to make the genetic algorithm explore a wider range of points—that is, to
increase the diversity of the populations—is to increase the Initial range. The Initial
range does not have to include the point x = 101, but it must be large enough so that the
algorithm generates individuals near x = 101. Set Initial range to [-10;90] as shown
in the following figure.
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Then click Start. The genetic algorithm returns a point very close to 101.

This time, the custom plot shows a much wider range of individuals. There are
individuals near 101 from early on, and the population mean begins to converge to 101.
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Include a Hybrid Function
A hybrid function is an optimization function that runs after the genetic algorithm
terminates in order to improve the value of the fitness function. The hybrid function uses
the final point from the genetic algorithm as its initial point. You can specify a hybrid
function in Hybrid function options.

This example uses Optimization Toolbox function fminunc, an unconstrained
minimization function. The example first runs the genetic algorithm to find a point close
to the optimal point and then uses that point as the initial point for fminunc.

The example finds the minimum of Rosenbrock's function, which is defined by

f x x x x x( , ) ( ) .1 2 2 1
2

2

1
2100 1= -( ) + -

The following figure shows a plot of Rosenbrock's function.
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Global Optimization Toolbox software contains the dejong2fcn.m file, which computes
Rosenbrock's function. To see a worked example of a hybrid function, enter

hybriddemo

at the MATLAB prompt.

To explore the example, first enter optimtool('ga') to open the Optimization app to
the ga solver. Enter the following settings:

• Set Fitness function to @dejong2fcn.
• Set Number of variables to 2.
• Optionally, to get the same pseudorandom numbers as this example, switch to the

command line and enter:

rng(1,'twister')

Before adding a hybrid function, click Start to run the genetic algorithm by itself. The
genetic algorithm displays the following results in the Run solver and view results
pane:

The final point is somewhat close to the true minimum at (1, 1). You can improve this
result by setting Hybrid function to fminunc (in the Hybrid function options).
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fminunc uses the final point of the genetic algorithm as its initial point. It returns a
more accurate result, as shown in the Run solver and view results pane.

Specify nondefault options for the hybrid function by creating options at the
command line. Use optimset for fminsearch, psoptimset for patternsearch, or
optimoptions for fmincon or fminunc. For example:

hybridopts = optimoptions('fminunc','Display','iter','Algorithm','quasi-newton');

In the Optimization app enter the name of your options structure in the Options box
under Hybrid function:
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At the command line, the syntax is as follows:

options = gaoptimset('HybridFcn',{@fminunc,hybridopts});

hybridopts must exist before you set options.
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Set Maximum Number of Generations

The Generations option in Stopping criteria determines the maximum number of
generations the genetic algorithm runs for—see “Stopping Conditions for the Algorithm”
on page 5-22. Increasing the Generations option often improves the final result.

As an example, change the settings in the Optimization app as follows:

• Set Fitness function to @rastriginsfcn.
• Set Number of variables to 10.
• Select Best fitness in the Plot functions pane.
• Set Generations to Inf.
• Set Stall generations to Inf.
• Set Stall time limit to Inf.

Run the genetic algorithm for approximately 300 generations and click Stop. The
following figure shows the resulting best fitness plot after 300 generations.
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Note that the algorithm stalls at approximately generation number 170—that is,
there is no immediate improvement in the fitness function after generation 170. If you
restore Stall generations to its default value of 50, the algorithm could terminate at
approximately generation number 220. If the genetic algorithm stalls repeatedly with the
current setting for Generations, you can try increasing both the Generations and Stall
generations options to improve your results. However, changing other options might be
more effective.

Note When Mutation function is set to Gaussian, increasing the value of
Generations might actually worsen the final result. This can occur because
the Gaussian mutation function decreases the average amount of mutation in
each generation by a factor that depends on the value specified in Generations.
Consequently, the setting for Generations affects the behavior of the algorithm.
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Vectorize the Fitness Function

In this section...

“Vectorize for Speed” on page 5-110
“Vectorized Constraints” on page 5-111

Vectorize for Speed

The genetic algorithm usually runs faster if you vectorize the fitness function. This means
that the genetic algorithm only calls the fitness function once, but expects the fitness
function to compute the fitness for all individuals in the current population at once. To
vectorize the fitness function,

• Write the file that computes the function so that it accepts a matrix with arbitrarily
many rows, corresponding to the individuals in the population. For example, to
vectorize the function

f x x x x x x x x( , )1 2 1
2

1 2 1 2
2

22 6 6= - + + -

write the file using the following code:
z =x(:,1).^2 - 2*x(:,1).*x(:,2) + 6*x(:,1) + x(:,2).^2 - 6*x(:,2);

The colon in the first entry of x indicates all the rows of x, so that x(:, 1) is a
vector. The .^ and .* operators perform elementwise operations on the vectors.

• In the User function evaluation pane, set the Evaluate fitness and constraint
functions option to vectorized.

Note The fitness function, and any nonlinear constraint function, must accept an
arbitrary number of rows to use the Vectorize option. ga sometimes evaluates a single
row even during a vectorized calculation.

The following comparison, run at the command line, shows the improvement in speed
with Vectorize set to On.

options = gaoptimset('PopulationSize',2000);

tic;ga(@rastriginsfcn,20,[],[],[],[],[],[],[],options);toc
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Optimization terminated: maximum number of generations exceeded.

Elapsed time is 12.054973 seconds.

options=gaoptimset(options,'Vectorize','on');

tic;ga(@rastriginsfcn,20,[],[],[],[],[],[],[],options);toc

Optimization terminated: maximum number of generations exceeded.

Elapsed time is 1.860655 seconds.

Vectorized Constraints

If there are nonlinear constraints, the objective function and the nonlinear constraints all
need to be vectorized in order for the algorithm to compute in a vectorized manner.

“Vectorize the Objective and Constraint Functions” on page 4-80 contains an example of
how to vectorize both for the solver patternsearch. The syntax is nearly identical for
ga. The only difference is that patternsearch can have its patterns appear as either
row or column vectors; the corresponding vectors for ga are the population vectors, which
are always rows.
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Constrained Minimization Using ga

Suppose you want to minimize the simple fitness function of two variables x1 and x2,

min ( ) ( )
x

f x x x x= -( ) + -100 11
2

2

2

1
2

subject to the following nonlinear inequality constraints and bounds
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Begin by creating the fitness and constraint functions. First, create a file named
simple_fitness.m as follows:

function y = simple_fitness(x)

y = 100*(x(1)^2 - x(2))^2 + (1 - x(1))^2;

(simple_fitness.m ships with Global Optimization Toolbox software.)

The genetic algorithm function, ga, assumes the fitness function will take one input x,
where x has as many elements as the number of variables in the problem. The fitness
function computes the value of the function and returns that scalar value in its one
return argument, y.

Then create a file, simple_constraint.m, containing the constraints

function [c, ceq] = simple_constraint(x)

c = [1.5 + x(1)*x(2) + x(1) - x(2);...

-x(1)*x(2) + 10];

ceq = [];

(simple_constraint.m ships with Global Optimization Toolbox software.)

The ga function assumes the constraint function will take one input x, where x has
as many elements as the number of variables in the problem. The constraint function
computes the values of all the inequality and equality constraints and returns two
vectors, c and ceq, respectively.

To minimize the fitness function, you need to pass a function handle to the fitness
function as the first argument to the ga function, as well as specifying the number of
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variables as the second argument. Lower and upper bounds are provided as LB and
UB respectively. In addition, you also need to pass a function handle to the nonlinear
constraint function.

ObjectiveFunction = @simple_fitness;

nvars = 2;    % Number of variables

LB = [0 0];   % Lower bound

UB = [1 13];  % Upper bound

ConstraintFunction = @simple_constraint;

rng(1,'twister') % for reproducibility

[x,fval] = ga(ObjectiveFunction,nvars,...

    [],[],[],[],LB,UB,ConstraintFunction)

Optimization terminated: average change in the fitness value less than options.TolFun

 and constraint violation is less than options.TolCon.

x =

    0.8123   12.3137

fval =

   1.3581e+04

The genetic algorithm solver handles linear constraints and bounds differently from
nonlinear constraints. All the linear constraints and bounds are satisfied throughout
the optimization. However, ga may not satisfy all the nonlinear constraints at every
generation. If ga converges to a solution, the nonlinear constraints will be satisfied at
that solution.

ga uses the mutation and crossover functions to produce new individuals at every
generation. ga satisfies linear and bound constraints by using mutation and crossover
functions that only generate feasible points. For example, in the previous call to ga, the
mutation function mutationguassian does not necessarily obey the bound constraints.
So when there are bound or linear constraints, the default ga mutation function is
mutationadaptfeasible. If you provide a custom mutation function, this custom
function must only generate points that are feasible with respect to the linear and bound
constraints. All the included crossover functions generate points that satisfy the linear
constraints and bounds except the crossoverheuristic function.

To see the progress of the optimization, use the gaoptimset function to create an
options structure that selects two plot functions. The first plot function is gaplotbestf,



5 Using the Genetic Algorithm

5-114

which plots the best and mean score of the population at every generation. The second
plot function is gaplotmaxconstr, which plots the maximum constraint violation of
nonlinear constraints at every generation. You can also visualize the progress of the
algorithm by displaying information to the command window using the 'Display'
option.

options = gaoptimset('PlotFcns',{@gaplotbestf,@gaplotmaxconstr},'Display','iter');

Rerun the ga solver.

[x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],...

              LB,UB,ConstraintFunction,options)

                           Best       max        Stall

Generation  f-count        f(x)     constraint  Generations

    1        2670       13603.7            0      0

    2        5282       13578.2    6.006e-06      0

    3        7894         14031            0      0

    4       16706       14047.7            0      0

    5       20606       13573.6    0.0009947      0

Optimization terminated: average change in the fitness value less than options.TolFun

 and constraint violation is less than options.TolCon.

x =

    0.8123   12.3103

fval =

   1.3574e+04
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You can provide a start point for the minimization to the ga function by specifying
the InitialPopulation option. The ga function will use the first individual from
InitialPopulation as a start point for a constrained minimization.

X0 = [0.5 0.5]; % Start point (row vector)

options = gaoptimset(options,'InitialPopulation',X0);

Now, rerun the ga solver.
[x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],...

              LB,UB,ConstraintFunction,options)

                           Best       max        Stall

Generation  f-count        f(x)     constraint  Generations

    1        2670       13578.1    0.0005084      0

    2        5282       13578.2    8.577e-06      0

    3        8394       14037.4            0      0
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    4       14144       13573.5    0.0009953      0

Optimization terminated: average change in the fitness value less than options.TolFun

 and constraint violation is less than options.TolCon.

x =

    0.8122   12.3103

fval =

   1.3574e+04
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Particle Swarm Optimization

• “What Is Particle Swarm Optimization?” on page 6-2
• “Optimize Using Particle Swarm” on page 6-3
• “Particle Swarm Output Function” on page 6-7
• “Particle Swarm Optimization Algorithm” on page 6-10
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What Is Particle Swarm Optimization?

Particle swarm is a population-based algorithm. In this respect it is similar to the genetic
algorithm. A collection of individuals called particles move in steps throughout a region.
At each step, the algorithm evaluates the objective function at each particle. After this
evaluation, the algorithm decides on the new velocity of each particle. The particles
move, then the algorithm reevaluates.

The inspiration for the algorithm is flocks of birds or insects swarming. Each particle
is attracted to some degree to the best location it has found so far, and also to the best
location any member of the swarm has found. After some steps, the population can
coalesce around one location, or can coalesce around a few locations, or can continue to
move.

The particleswarm function attempts to optimize using a “Particle Swarm
Optimization Algorithm” on page 6-10.
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Optimize Using Particle Swarm

This example shows how to optimize using the particleswarm solver.

The objective function in this example is De Jong’s fifth function, which is included with
Global Optimization Toolbox software.

dejong5fcn

This function has 25 local minima.

Try to find the minimum of the function using the default particleswarm settings.
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fun = @dejong5fcn;

nvars = 2;

rng default % For reproducibility

[x,fval,exitflag] = particleswarm(fun,nvars)

Optimization ended: relative change in the objective value

over the last OPTIONS.StallIterLimit iterations is less than OPTIONS.TolFun.

x =

  -31.9521  -16.0176

fval =

    5.9288

exitflag =

     1

Is the solution x the global optimum? It is unclear at this point. Looking at the function
plot shows that the function has local minima for components in the range [-50,50].
So restricting the range of the variables to [-50,50] helps the solver locate a global
minimum.

lb = [-50;-50];

ub = -lb;

[x,fval,exitflag] = particleswarm(fun,nvars,lb,ub)

x =

  -16.0079  -31.9697

fval =

    1.9920

exitflag =

     1
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This looks promising: the new solution has lower fval than the previous one. But is x
truly a global solution? Try minimizing again with more particles, to better search the
region.

options = optimoptions('particleswarm','SwarmSize',100);

[x,fval,exitflag] = particleswarm(fun,nvars,lb,ub,options)

Optimization ended: change in the objective value less than options.TolFun.

x =

  -31.9781  -31.9784

fval =

    0.9980

exitflag =

     1

This looks even more promising. But is this answer a global solution, and how accurate
is it? Rerun the solver with a hybrid function. particleswarm calls the hybrid function
after particleswarm finishes its iterations.

options.HybridFcn = @fmincon;

[x,fval,exitflag] = particleswarm(fun,nvars,lb,ub,options)

Optimization ended: change in the objective value less than options.TolFun.

x =

  -31.9783  -31.9784

fval =

    0.9980

exitflag =

     1
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particleswarm found essentially the same solution as before. This gives you some
confidence that particleswarm reports a local minimum and that the final x is the
global solution.
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Particle Swarm Output Function

This example shows how to use an output function for particleswarm. The output
function plots the range that the particles occupy in each dimension.

An output function runs after each iteration of the solver. For syntax details, and for the
data available to an output function, see the particleswarm options reference pages.

Copy the following code into a file named pswplotranges.m on your MATLAB path.
The code sets up nplot subplots, where nplot is the number of dimensions in the
problem.

function stop = pswplotranges(optimValues,state)

stop = false; % This function does not stop the solver

switch state

    case 'init'

        nplot = size(optimValues.swarm,2); % Number of dimensions

        for i = 1:nplot % Set up axes for plot

            subplot(nplot,1,i);

            tag = sprintf('psoplotrange_var_%g',i); % Set a tag for the subplot

            semilogy(optimValues.iteration,0,'-k','Tag',tag); % Log-scaled plot

            ylabel(num2str(i))

        end

        xlabel('Iteration','interp','none'); % Iteration number at the bottom

        subplot(nplot,1,1) % Title at the top

        title('Log range of particles by component')

        setappdata(gcf,'t0',tic); % Set up a timer to plot only when needed

    case 'iter'

        nplot = size(optimValues.swarm,2); % Number of dimensions

        for i = 1:nplot

            subplot(nplot,1,i);

            % Calculate the range of the particles at dimension i

            irange = max(optimValues.swarm(:,i)) - min(optimValues.swarm(:,i));

            tag = sprintf('psoplotrange_var_%g',i);

            plotHandle = findobj(get(gca,'Children'),'Tag',tag); % Get the subplot

            xdata = plotHandle.XData; % Get the X data from the plot

            newX = [xdata optimValues.iteration]; % Add the new iteration

            plotHandle.XData = newX; % Put the X data into the plot

            ydata = plotHandle.YData; % Get the Y data from the plot

            newY = [ydata irange]; % Add the new value

            plotHandle.YData = newY; % Put the Y data into the plot

        end
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        if toc(getappdata(gcf,'t0')) > 1/30 % If 1/30 s has passed

          drawnow % Show the plot

          setappdata(gcf,'t0',tic); % Reset the timer

        end

    case 'done'

        % No cleanup necessary

end

This output function draws a plot with one line per dimension. Each line represents
the range of the particles in the swarm in that dimension. The plot is log-scaled to
accommodate wide ranges. If the swarm converges to a single point, then the range of
each dimension goes to zero. But if the swarm does not converge to a single point, then
the range stays away from zero in some dimensions.

Define the problem in your workspace. The multirosenbrock function is a
generalization of Rosenbrock’s function to any even number of dimensions. It has a
global minimum of 0 at the point [1,1,1,1,...]. The multirosenbrock.m file is
included with Global Optimization Toolbox software. See its code by entering type
multirosenbrock.

fun = @multirosenbrock;

nvar = 4; % A 4-D problem

lb = -10*ones(nvar,1); % Bounds to help the solver converge

ub = -lb;

Set the options to use the output function.

options = optimoptions(@particleswarm,'OutputFcns',@pswplotranges);

Set the random number generator to get reproducible output. Then call the solver.

rng default % For reproducibility

[x,fval,eflag] = particleswarm(fun,nvar,lb,ub,options)

Optimization ended: relative change in the objective value

over the last OPTIONS.StallIterLimit iterations is less than OPTIONS.TolFun.

x =

    0.9964    0.9930    0.9835    0.9681

fval =
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   3.4935e-04

eflag =

     1

The solver returned a point near the optimum [1,1,1,1]. But the span of the swarm
did not converge to zero.

More About
• “Output Function and Plot Function” on page 10-57
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Particle Swarm Optimization Algorithm

In this section...

“Algorithm Outline” on page 6-10
“Initialization” on page 6-10
“Iteration Steps” on page 6-11
“Stopping Criteria” on page 6-12

Algorithm Outline

The particle swarm algorithm begins by creating the initial particles, and assigning them
initial velocities.

It evaluates the objective function at each particle location, and determines the best
(lowest) function value and the best location.

It chooses new velocities, based on the current velocity, the particles’ individual best
locations, and the best locations of their neighbors.

It then iteratively updates the particle locations (the new location is the old one plus the
velocity, modified to keep particles within bounds), velocities, and neighbors.

Iterations proceed until the algorithm reaches a stopping criterion.

Here are the details of the steps.

Initialization

By default, particleswarm creates particles at random uniformly within bounds. If
there is an unbounded component, particleswarm creates particles with a random
uniform distribution from –1000 to 1000. If you have only one bound, particleswarm
shifts the creation to have the bound as an endpoint, and a creation interval 2000 wide.
Particle i has position x(i), which is a row vector with nvars elements. Control the
span of the initial swarm using the InitialSwarmSpan option.

Similarly, particleswarm creates initial particle velocities v uniformly within the
range [-r,r], where r is the vector of initial ranges. The range of component i is the
ub(i) - lb(i), but for unbounded or semi-unbounded components the range is the
InitialSwarmSpan option.
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particleswarm evaluates the objective function at all particles. It records the current
position p(i) of each particle i. In subsequent iterations, p(i) will be the location of the
best objective function that particle i has found. And b is the best over all particles: b =
min(fun(p(i))). d is the location such that b = fun(d).

particleswarm initializes the neighborhood size N to minNeighborhoodSize =
max(1,floor(SwarmSize*minFractionNeighbors)).

particleswarm initializes the inertia W = max(InertiaRange), or if InertiaRange
is negative, it sets W = min(InertiaRange).

particleswarm initializes the stall counter c = 0.

For convenience of notation, set the variable y1 = SelfAdjustment, and y2 =
SocialAdjustment, where SelfAdjustment and SocialAdjustment are options.

Iteration Steps

The algorithm updates the swarm as follows. For particle i, which is at position x(i):

1 Choose a random subset S of N particles other than i.
2 Find fbest(S), the best objective function among the neighbors, and g(S), the

position of the neighbor with the best objective function.
3 For u1 and u2 uniformly (0,1) distributed random vectors of length nvars, update

the velocity
v = W*v + y1*u1.*(p-x) + y2*u2.*(g-x).

This update uses a weighted sum of:

• The previous velocity v
• The difference between the current position and the best position the particle has

seen p-x
• The difference between the current position and the best position in the current

neighborhood g-x
4 Update the position x = x + v.
5 Enforce the bounds. If any component of x is outside a bound, set it equal to that

bound.
6 Evaluate the objective function f = fun(x).
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7 If f < fun(p), then set p = x. This step ensures p has the best position the
particle has seen.

8 If f < b, then set b = f and d = x. This step ensures b has the best objective
function in the swarm, and d has the best location.

9 If, in the previous step, the best function value was lowered, then set flag = true.
Otherwise, flag = false. The value of flag is used in the next step.

10 Update the neighborhood. If flag = true:

a Set c = max(0,c-1).
b Set N to minNeighborhoodSize.
c If c < 2, then set W = 2*W.
d If c > 5, then set W = W/2.
e Ensure that W is in the bounds of the InertiaRange option.

If flag = false:

a Set c = c+1.
b Set N = min(N + minNeighborhoodSize,SwarmSize).

Stopping Criteria

particleswarm iterates until it reaches a stopping criterion.

Stopping Option Stopping Test Exit Flag

StallIterLimit and
TolFun

Relative change in the
best objective function
value g over the last
StallIterLimit iterations
is less than TolFun.

1

MaxIter Number of iterations
reaches MaxIter.

0

OutputFcns or PlotFcns OutputFcns or PlotFcns
can halt the iterations.

-1

ObjectiveLimit Best objective function
value g is less than or equal
to ObjectiveLimit.

-3
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Stopping Option Stopping Test Exit Flag

StallTimeLimit Best objective function
value g did not change in
the last StallTimeLimit
seconds.

-4

MaxTime Function run time exceeds
MaxTime seconds.

-5

If particleswarm stops with exit flag 1, it optionally calls a hybrid function after it
exits.
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Using Simulated Annealing

• “What Is Simulated Annealing?” on page 7-2
• “Optimize Using Simulated Annealing” on page 7-3
• “Minimize Function with Many Local Minima” on page 7-6
• “Simulated Annealing Terminology” on page 7-10
• “How Simulated Annealing Works” on page 7-12
• “Command Line Simulated Annealing Optimization” on page 7-15
• “Minimization Using Simulated Annealing Algorithm” on page 7-20
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What Is Simulated Annealing?

Simulated annealing is a method for solving unconstrained and bound-constrained
optimization problems. The method models the physical process of heating a material
and then slowly lowering the temperature to decrease defects, thus minimizing the
system energy.

At each iteration of the simulated annealing algorithm, a new point is randomly
generated. The distance of the new point from the current point, or the extent of
the search, is based on a probability distribution with a scale proportional to the
temperature. The algorithm accepts all new points that lower the objective, but also,
with a certain probability, points that raise the objective. By accepting points that raise
the objective, the algorithm avoids being trapped in local minima, and is able to explore
globally for more possible solutions. An annealing schedule is selected to systematically
decrease the temperature as the algorithm proceeds. As the temperature decreases, the
algorithm reduces the extent of its search to converge to a minimum.
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Optimize Using Simulated Annealing

In this section...

“Calling simulannealbnd at the Command Line” on page 7-3
“Using the Optimization App” on page 7-3

Calling simulannealbnd at the Command Line

To call the simulated annealing function at the command line, use the syntax

[x fval] = simulannealbnd(@objfun,x0,lb,ub,options)

where

• @objfun is a function handle to the objective function.
• x0 is an initial guess for the optimizer.
• lb and ub are lower and upper bound constraints, respectively, on x.
• options is a structure containing options for the algorithm. If you do not pass in this

argument, simulannealbnd uses its default options.

The results are given by:

• x — Final point returned by the solver
• fval — Value of the objective function at x

The command-line function simulannealbnd is convenient if you want to

• Return results directly to the MATLAB workspace.
• Run the simulated annealing algorithm multiple times with different options by

calling simulannealbnd from a file.

“Command Line Simulated Annealing Optimization” on page 7-15 provides a detailed
description of using the function simulannealbnd and creating the options structure.

Using the Optimization App

To open the Optimization app, enter
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optimtool('simulannealbnd')

at the command line, or enter optimtool and then choose simulannealbnd from the
Solver menu.

Choose solver

Set options Expand or contract help

Run solver

View results

See final point

Enter problem
and constraints

You can also start the tool from the MATLAB Apps tab.
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To use the Optimization app, you must first enter the following information:

• Objective function — The objective function you want to minimize. Enter the
fitness function in the form @fitnessfun, where fitnessfun.m is a file that
computes the objective function. “Compute Objective Functions” on page 2-2 explains
how write this file. The @ sign creates a function handle to fitnessfun.

• Number of variables — The length of the input vector to the fitness function. For
the function my_fun described in “Compute Objective Functions” on page 2-2, you
would enter 2.

You can enter bounds for the problem in the Constraints pane. If the problem is
unconstrained, leave these fields blank.

To run the simulated annealing algorithm, click the Start button. The tool displays the
results of the optimization in the Run solver and view results pane.

You can change the options for the simulated annealing algorithm in the Options pane.
To view the options in one of the categories listed in the pane, click the + sign next to it.

For more information,

• See “Optimization App” in the Optimization Toolbox documentation.
• See “Minimize Using the Optimization App” on page 7-8 for an example of using

the tool with the function simulannealbnd.
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Minimize Function with Many Local Minima

In this section...

“Description” on page 7-6
“Minimize at the Command Line” on page 7-8
“Minimize Using the Optimization App” on page 7-8

Description

This section presents an example that shows how to find a local minimum of a function
using simulated annealing.

De Jong's fifth function is a two-dimensional function with many (25) local minima:

dejong5fcn
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Many standard optimization algorithms get stuck in local minima. Because the
simulated annealing algorithm performs a wide random search, the chance of being
trapped in local minima is decreased.

Note: Because simulated annealing uses random number generators, each time you
run this algorithm you can get different results. See “Reproduce Your Results” on page
7-18 for more information.
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Minimize at the Command Line

To run the simulated annealing algorithm without constraints, call simulannealbnd
at the command line using the objective function in dejong5fcn.m, referenced by
anonymous function pointer:

rng(10,'twister') % for reproducibility

fun = @dejong5fcn;

[x fval] = simulannealbnd(fun,[0 0])

This returns

Optimization terminated: change in best function value less than options.TolFun.

x =

  -16.1292  -15.8214

fval =

    6.9034

where

• x is the final point returned by the algorithm.
• fval is the objective function value at the final point.

Minimize Using the Optimization App

To run the minimization using the Optimization app,

1 Set up your problem as pictured in the Optimization app
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2 Click Start under Run solver and view results:

Your results can differ from the pictured ones, because simulannealbnd uses a
random number stream.
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Simulated Annealing Terminology

In this section...

“Objective Function” on page 7-10
“Temperature” on page 7-10
“Annealing Parameter” on page 7-11
“Reannealing” on page 7-11

Objective Function

The objective function is the function you want to optimize. Global Optimization Toolbox
algorithms attempt to find the minimum of the objective function. Write the objective
function as a file or anonymous function, and pass it to the solver as a function handle.
For more information, see “Compute Objective Functions” on page 2-2 and “Create
Function Handle”.

Temperature

The temperature is a parameter in simulated annealing that affects two aspects of the
algorithm:

• The distance of a trial point from the current point (See “Outline of the Algorithm” on
page 7-12, Step 1.)

• The probability of accepting a trial point with higher objective function value (See
“Outline of the Algorithm” on page 7-12, Step 2.)

Temperature can be a vector with different values for each component of the current
point. Typically, the initial temperature is a scalar.

Temperature decreases gradually as the algorithm proceeds. You can specify the initial
temperature as a positive scalar or vector in the InitialTemperature option. You can
specify the temperature as a function of iteration number as a function handle in the
TemperatureFcn option. The temperature is a function of the “Annealing Parameter”
on page 7-11, which is a proxy for the iteration number. The slower the rate of
temperature decrease, the better the chances are of finding an optimal solution, but
the longer the run time. For a list of built-in temperature functions and the syntax of a
custom temperature function, see “Temperature Options” on page 10-64.
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Annealing Parameter

The annealing parameter is a proxy for the iteration number. The algorithm can raise
temperature by setting the annealing parameter to a lower value than the current
iteration. (See “Reannealing” on page 7-11.) You can specify the temperature
schedule as a function handle with the TemperatureFcn option.

Reannealing

Annealing is the technique of closely controlling the temperature when cooling a material
to ensure that it reaches an optimal state. Reannealing raises the temperature after the
algorithm accepts a certain number of new points, and starts the search again at the
higher temperature. Reannealing avoids the algorithm getting caught at local minima.
Specify the reannealing schedule with the ReannealInterval option.
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How Simulated Annealing Works

In this section...

“Outline of the Algorithm” on page 7-12
“Stopping Conditions for the Algorithm” on page 7-14
“Bibliography” on page 7-14

Outline of the Algorithm

The simulated annealing algorithm performs the following steps:

1 The algorithm generates a random trial point. The algorithm chooses the distance
of the trial point from the current point by a probability distribution with a scale
depending on the current temperature. You set the trial point distance distribution
as a function with the AnnealingFcn option. Choices:

• @annealingfast (default) — Step length equals the current temperature, and
direction is uniformly random.

• @annealingboltz — Step length equals the square root of temperature, and
direction is uniformly random.

• @myfun — Custom annealing algorithm, myfun. For custom annealing function
syntax, see “Algorithm Settings” on page 10-65.

2 The algorithm determines whether the new point is better or worse than the current
point. If the new point is better than the current point, it becomes the next point.
If the new point is worse than the current point, the algorithm can still make it the
next point. The algorithm accepts a worse point based on an acceptance function.
Choose the acceptance function with the AcceptanceFcn option. Choices:

• @acceptancesa (default) — Simulated annealing acceptance function. The
probability of acceptance is

1
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Δ = new objective – old objective.
T0 = initial temperature of component i
T = the current temperature.

Since both Δ and T are positive, the probability of acceptance is between 0 and
1/2. Smaller temperature leads to smaller acceptance probability. Also, larger Δ
leads to smaller acceptance probability.

• @myfun — Custom acceptance function, myfun. For custom acceptance function
syntax, see “Algorithm Settings” on page 10-65.

3 The algorithm systematically lowers the temperature, storing the best point found so
far. The TemperatureFcn option specifies the function the algorithm uses to update
the temperature. Let k denote the annealing parameter. (The annealing parameter is
the same as the iteration number until reannealing.) Options:

• @temperatureexp (default) — T = T0 * 0.95^k.
• @temperaturefast — T = T0 / k.
• @temperatureboltz — T = T0 / log(k).
• @myfun — Custom temperature function, myfun. For custom temperature

function syntax, see “Temperature Options” on page 10-64.
4 simulannealbnd reanneals after it accepts ReannealInterval points.

Reannealing sets the annealing parameters to lower values than the iteration
number, thus raising the temperature in each dimension. The annealing parameters
depend on the values of estimated gradients of the objective function in each
dimension. The basic formula is
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where
ki = annealing parameter for component i.
T0 = initial temperature of component i.
Ti = current temperature of component i.
si = gradient of objective in direction i times difference of bounds in direction i.

simulannealbnd safeguards the annealing parameter values against Inf and other
improper values.
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5 The algorithm stops when the average change in the objective function is small
relative to the TolFun tolerance, or when it reaches any other stopping criterion. See
“Stopping Conditions for the Algorithm” on page 7-14.

For more information on the algorithm, see Ingber [1].

Stopping Conditions for the Algorithm

The simulated annealing algorithm uses the following conditions to determine when to
stop:

• TolFun — The algorithm runs until the average change in value of the objective
function in StallIterLim iterations is less than the value of TolFun. The default
value is 1e-6.

• MaxIter — The algorithm stops when the number of iterations exceeds this
maximum number of iterations. You can specify the maximum number of iterations
as a positive integer or Inf. The default value is Inf.

• MaxFunEval specifies the maximum number of evaluations of the objective function.
The algorithm stops if the number of function evaluations exceeds the value of
MaxFunEval. The default value is 3000*numberofvariables.

• TimeLimit specifies the maximum time in seconds the algorithm runs before
stopping. The default value is Inf.

• ObjectiveLimit — The algorithm stops when the best objective function value is
less than or equal to the value of ObjectiveLimit. The default value is -Inf.

Bibliography

[1] Ingber, L. Adaptive simulated annealing (ASA): Lessons learned. Invited paper to
a special issue of the Polish Journal Control and Cybernetics on “Simulated
Annealing Applied to Combinatorial Optimization.” 1995. Available from http://
www.ingber.com/asa96_lessons.ps.gz

http://www.ingber.com/asa96_lessons.ps.gz
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Command Line Simulated Annealing Optimization

In this section...

“Run simulannealbnd With the Default Options” on page 7-15
“Set Options for simulannealbnd at the Command Line” on page 7-16
“Reproduce Your Results” on page 7-18

Run simulannealbnd With the Default Options

To run the simulated annealing algorithm with the default options, call
simulannealbnd with the syntax

[x,fval] = simulannealbnd(@objfun,x0)

The input arguments to simulannealbnd are

• @objfun — A function handle to the file that computes the objective function.
“Compute Objective Functions” on page 2-2 explains how to write this file.

• x0 — The initial guess of the optimal argument to the objective function.

The output arguments are

• x — The final point.
• fval — The value of the objective function at x.

For a description of additional input and output arguments, see the reference pages for
simulannealbnd.

You can run the example described in “Minimize Function with Many Local Minima” on
page 7-6 from the command line by entering

rng(10,'twister') % for reproducibility

[x,fval] = simulannealbnd(@dejong5fcn,[0 0])

This returns

Optimization terminated: change in best function value less than options.TolFun.

x =

  -16.1292  -15.8214
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fval =

    6.9034

Additional Output Arguments

To get more information about the performance of the algorithm, you can call
simulannealbnd with the syntax

[x,fval,exitflag,output] = simulannealbnd(@objfun,x0) 

Besides x and fval, this function returns the following additional output arguments:

• exitflag — Flag indicating the reason the algorithm terminated
• output — Structure containing information about the performance of the algorithm

See the simulannealbnd reference pages for more information about these arguments.

Set Options for simulannealbnd at the Command Line

You can specify options by passing an options structure as an input argument to
simulannealbnd using the syntax

[x,fval] = simulannealbnd(@objfun,x0,[],[],options) 

This syntax does not specify any lower or upper bound constraints.

You create the options structure using the saoptimset function:

options = saoptimset('simulannealbnd')

This returns the structure options with the default values for its fields:

options = 

          AnnealingFcn: @annealingfast

        TemperatureFcn: @temperatureexp

         AcceptanceFcn: @acceptancesa

                TolFun: 1.0000e-006

        StallIterLimit: '500*numberofvariables'

           MaxFunEvals: '3000*numberofvariables'

             TimeLimit: Inf

               MaxIter: Inf

        ObjectiveLimit: -Inf
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               Display: 'final'

       DisplayInterval: 10

             HybridFcn: []

        HybridInterval: 'end'

              PlotFcns: []

          PlotInterval: 1

            OutputFcns: []

    InitialTemperature: 100

      ReannealInterval: 100

              DataType: 'double'

The value of each option is stored in a field of the options structure, such as
options.ReannealInterval. You can display any of these values by entering
options followed by the name of the field. For example, to display the interval for
reannealing used for the simulated annealing algorithm, enter

options.ReannealInterval

ans =

   100

To create an options structure with a field value that is different from the default—for
example, to set ReannealInterval to 300 instead of its default value 100—enter

options = saoptimset('ReannealInterval',300) 

This creates the options structure with all values set to their defaults, except for
ReannealInterval, which is set to 300.

If you now enter

simulannealbnd(@objfun,x0,[],[],options) 

simulannealbnd runs the simulated annealing algorithm with a reannealing interval of
300.

If you subsequently decide to change another field in the options structure, such as
setting PlotFcns to @saplotbestf, which plots the best objective function value at
each iteration, call saoptimset with the syntax

options = saoptimset(options,'PlotFcns',@saplotbestf) 

This preserves the current values of all fields of options except for PlotFcns, which
is changed to @saplotbestf. Note that if you omit the input argument options,
saoptimset resets ReannealInterval to its default value 100.
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You can also set both ReannealInterval and PlotFcns with the single command

options = saoptimset('ReannealInterval',300, ...

                     'PlotFcns',@saplotbestf) 

Reproduce Your Results

Because the simulated annealing algorithm is stochastic—that is, it makes random
choices—you get slightly different results each time you run it. The algorithm uses the
default MATLAB pseudorandom number stream. For more information about random
number streams, see RandStream. Each time the algorithm calls the stream, its state
changes. So the next time the algorithm calls the stream, it returns a different random
number.

If you need to reproduce your results exactly, call simulannealbnd with the output
argument. The output structure contains the current random number generator state in
the output.rngstate field. Reset the state before running the function again.

For example, to reproduce the output of simulannealbnd applied to De Jong's fifth
function, call simulannealbnd with the syntax

rng(10,'twister') % for reproducibility

[x,fval,exitflag,output] = simulannealbnd(@dejong5fcn,[0 0]);

Suppose the results are

x,fval

x =

  -16.1292  -15.8214

fval =

    6.9034

The state of the random number generator, rngstate, is stored in output.rngstate:

output.rngstate

ans = 

    state: [625x1 uint32]

     type: 'mt19937ar'

Reset the stream by entering
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stream = RandStream.getGlobalStream;

stream.State = output.rngstate.state;

If you now run simulannealbnd a second time, you get the same results.

You can reproduce your run in the Optimization app by checking the box Use random
states from previous run in the Run solver and view results section.

Note If you do not need to reproduce your results, it is better not to set the states of
RandStream, so that you get the benefit of the randomness in these algorithms.
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Minimization Using Simulated Annealing Algorithm

This example shows how to create and minimize an objective function using Simulated
Annealing in the Global Optimization Toolbox.

A Simple Objective Function

We want to minimize a simple function of two variables

   min f(x) = (4 - 2.1*x1^2 + x1^4/3)*x1^2 + x1*x2 + (-4 + 4*x2^2)*x2^2;

    x

The above function is known as 'cam' as described in L.C.W. Dixon and G.P. Szego (eds.),
Towards Global Optimisation 2, North-Holland, Amsterdam, 1978.

Coding the Objective Function

We create a MATLAB file named simple_objective.m with the following code in it:

   function y = simple_objective(x)

   y = (4 - 2.1*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + ...

       (-4 + 4*x(2)^2)*x(2)^2;

The Simulated Annealing solver assumes the objective function will take one input x
where x has as many elements as the number of variables in the problem. The objective
function computes the scalar value of the objective and returns it in its single return
argument y.

Minimizing Using SIMULANNEALBND

To minimize our objective function using the SIMULANNEALBND function, we need to
pass in a function handle to the objective function as well as specifying a start point as
the second argument.

ObjectiveFunction = @simple_objective;

X0 = [0.5 0.5];   % Starting point

[x,fval,exitFlag,output] = simulannealbnd(ObjectiveFunction,X0)

Optimization terminated: change in best function value less than options.TolFun.

x =

   -0.0896    0.7130
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fval =

   -1.0316

exitFlag =

     1

output = 

     iterations: 2948

      funccount: 2971

        message: 'Optimization terminated: change in best function value l...'

       rngstate: [1x1 struct]

    problemtype: 'unconstrained'

    temperature: [2x1 double]

      totaltime: 3.7908

The first two output arguments returned by SIMULANNEALBND are x, the best
point found, and fval, the function value at the best point. A third output argument,
exitFlag returns a flag corresponding to the reason SIMULANNEALBND stopped.
SIMULANNEALBND can also return a fourth argument, output, which contains
information about the performance of the solver.

Bound Constrained Minimization

SIMULANNEALBND can be used to solve problems with bound constraints. The
lower and upper bounds are passed to the solver as vectors. For each dimension i, the
solver ensures that lb(i) <= x(i) <= ub(i), where x is a point selected by the solver during
simulation. We impose the bounds on our problem by specifying a range -64 <= x(i) <= 64
for x(i).

lb = [-64 -64];

ub = [64 64];

Now, we can rerun the solver with lower and upper bounds as input arguments.

[x,fval,exitFlag,output] = simulannealbnd(ObjectiveFunction,X0,lb,ub);

fprintf('The number of iterations was : %d\n', output.iterations);
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fprintf('The number of function evaluations was : %d\n', output.funccount);

fprintf('The best function value found was : %g\n', fval);

Optimization terminated: change in best function value less than options.TolFun.

The number of iterations was : 2428

The number of function evaluations was : 2447

The best function value found was : -1.03163

How Simulated Annealing Works

Simulated annealing mimics the annealing process to solve an optimization problem.
It uses a temperature parameter that controls the search. The temperature parameter
typically starts off high and is slowly "cooled" or lowered in every iteration. At each
iteration a new point is generated and its distance from the current point is proportional
to the temperature. If the new point has a better function value it replaces the current
point and iteration counter is incremented. It is possible to accept and move forward with
a worse point. The probability of doing so is directly dependent on the temperature. This
unintuitive step sometime helps identify a new search region in hope of finding a better
minimum.

An Objective Function with Additional Arguments

Sometimes we want our objective function to be parameterized by extra arguments that
act as constants during the optimization. For example, in the previous objective function,
say we want to replace the constants 4, 2.1, and 4 with parameters that we can change
to create a family of objective functions. We can re-write the above function to take three
additional parameters to give the new minimization problem.

   min f(x) = (a - b*x1^2 + x1^4/3)*x1^2 + x1*x2 + (-c + c*x2^2)*x2^2;

    x

a, b, and c are parameters to the objective function that act as constants during the
optimization (they are not varied as part of the minimization). One can create a
MATLAB file called parameterized_objective.m containing the following code.

   function y = parameterized_objective(x,a,b,c)

   y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + ...

       (-c + c*x(2)^2)*x(2)^2;

Minimizing Using Additional Arguments

Again, we need to pass in a function handle to the objective function as well as a start
point as the second argument.
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SIMULANNEALBND will call our objective function with just one argument x, but our
objective function has four arguments: x, a, b, c. We can use an anonymous function to
capture the values of the additional arguments, the constants a, b, and c. We create a
function handle 'ObjectiveFunction' to an anonymous function that takes one input x, but
calls 'parameterized_objective' with x, a, b and c. The variables a, b, and c have values
when the function handle 'ObjectiveFunction' is created, so these values are captured by
the anonymous function.

a = 4; b = 2.1; c = 4;    % define constant values

ObjectiveFunction = @(x) parameterized_objective(x,a,b,c);

X0 = [0.5 0.5];

[x,fval] = simulannealbnd(ObjectiveFunction,X0)

Optimization terminated: change in best function value less than options.TolFun.

x =

    0.0898   -0.7127

fval =

   -1.0316
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What Is Multiobjective Optimization?

You might need to formulate problems with more than one objective, since a single
objective with several constraints may not adequately represent the problem being faced.
If so, there is a vector of objectives,
F(x) = [F1(x), F2(x),...,Fm(x)],
that must be traded off in some way. The relative importance of these objectives is
not generally known until the system's best capabilities are determined and tradeoffs
between the objectives fully understood. As the number of objectives increases, tradeoffs
are likely to become complex and less easily quantified. The designer must rely on his
or her intuition and ability to express preferences throughout the optimization cycle.
Thus, requirements for a multiobjective design strategy must enable a natural problem
formulation to be expressed, and be able to solve the problem and enter preferences into
a numerically tractable and realistic design problem.

Multiobjective optimization is concerned with the minimization of a vector of objectives
F(x) that can be the subject of a number of constraints or bounds:
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Note that because F(x) is a vector, if any of the components of F(x) are competing,
there is no unique solution to this problem. Instead, the concept of noninferiority in
Zadeh [4] (also called Pareto optimality in Censor [1] and Da Cunha and Polak [2])
must be used to characterize the objectives. A noninferior solution is one in which an
improvement in one objective requires a degradation of another. To define this concept
more precisely, consider a feasible region, Ω, in the parameter space. x is an element of
the n-dimensional real numbers x
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This allows definition of the corresponding feasible region for the objective function space
Λ:

L W= Œ = Œ{ }y y F x xm
R : ( ), .

The performance vector F(x) maps parameter space into objective function space,
as represented in two dimensions in the figure Mapping from Parameter Space into
Objective Function Space.

Figure 8-1. Mapping from Parameter Space into Objective Function Space

A noninferior solution point can now be defined.

Definition: Point x*Œ W  is a noninferior solution if for some neighborhood of x* there
does not exist a Δx such that x x* +( ) ŒD W  and
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In the two-dimensional representation of the figure Set of Noninferior Solutions, the set
of noninferior solutions lies on the curve between C and D. Points A and B represent
specific noninferior points.



8 Multiobjective Optimization

8-4

Figure 8-2. Set of Noninferior Solutions

A and B are clearly noninferior solution points because an improvement in one objective,
F1, requires a degradation in the other objective, F2, i.e., F1B < F1A, F2B > F2A.

Since any point in Ω that is an inferior point represents a point in which improvement
can be attained in all the objectives, it is clear that such a point is of no value.
Multiobjective optimization is, therefore, concerned with the generation and selection of
noninferior solution points.

Noninferior solutions are also called Pareto optima. A general goal in multiobjective
optimization is constructing the Pareto optima. The algorithm used in gamultiobj is
described in Deb [3].
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Use gamultiobj

In this section...

“Problem Formulation” on page 8-5
“Use gamultiobj with the Optimization app” on page 8-5
“Multiobjective Optimization with Two Objectives” on page 8-6
“Options and Syntax: Differences from ga” on page 8-13

Problem Formulation

The gamultiobj solver attempts to create a set of Pareto optima for a multiobjective
minimization. You may optionally set bounds or other constraints on variables.
gamultiobj uses the genetic algorithm for finding local Pareto optima. As in the
ga function, you may specify an initial population, or have the solver generate one
automatically.

The fitness function for use in gamultiobj should return a vector of type double.
The population may be of type double, a bit string vector, or can be a custom-typed
vector. As in ga, if you use a custom population type, you must write your own creation,
mutation, and crossover functions that accept inputs of that population type, and specify
these functions in the following fields, respectively:

• Creation function (CreationFcn)
• Mutation function (MutationFcn)
• Crossover function (CrossoverFcn)

You can set the initial population in a variety of ways. Suppose that you choose a
population of size m. (The default population size is 15 times the number of variables n.)
You can set the population:

• As an m-by-n matrix, where the rows represent m individuals.
• As a k-by-n matrix, where k < m. The remaining m – k individuals are generated by a

creation function.
• The entire population can be created by a creation function.

Use gamultiobj with the Optimization app

You can access gamultiobj from the Optimization app. Enter
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optimtool('gamultiobj')

at the command line, or enter optimtool and then choose gamultiobj from the Solver
menu. You can also start the tool from the MATLAB Apps tab.

If the Quick Reference help pane is closed, you can open it by clicking the “>>” button
on the upper right: . The help pane briefly explains all the available options.

You can create an options structure in the Optimization app, export it to the MATLAB
workspace, and use the structure at the command line. For details, see “Importing and
Exporting Your Work” in the Optimization Toolbox documentation.

Multiobjective Optimization with Two Objectives

This example has a two-objective fitness function f(x), where x is also two-dimensional:

function f = mymulti1(x)

f(1) = x(1)^4 - 10*x(1)^2+x(1)*x(2) + x(2)^4 -(x(1)^2)*(x(2)^2);

f(2) = x(2)^4 - (x(1)^2)*(x(2)^2) + x(1)^4 + x(1)*x(2);

Create this function file before proceeding.

Performing the Optimization with Optimization App

1 To define the optimization problem, start the Optimization app, and set it as
pictured.
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2 Set the options for the problem as pictured.
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3 Run the optimization by clicking Start under Run solver and view results.

A plot appears in a figure window.
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This plot shows the tradeoff between the two components of f. It is plotted in objective
function space; see the figure Set of Noninferior Solutions.

The results of the optimization appear in the following table containing both objective
function values and the value of the variables.
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You can sort the table by clicking a heading. Click the heading again to sort it in the
reverse order. The following figures show the result of clicking the heading f1.
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Performing the Optimization at the Command Line

To perform the same optimization at the command line:

1 Set the options:

options = gaoptimset('PopulationSize',60,...

          'ParetoFraction',0.7,'PlotFcns',@gaplotpareto);

2 Run the optimization using the options:

[x,fval,flag,output,population] = gamultiobj(@mymulti1,2,...

                          [],[],[],[],[-5,-5],[5,5],options);

Alternate Views

There are other ways of regarding the problem. The following figure contains a plot of the
level curves of the two objective functions, the Pareto frontier calculated by gamultiobj
(boxes), and the x-values of the true Pareto frontier (diamonds connected by a nearly-
straight line). The true Pareto frontier points are where the level curves of the objective
functions are parallel. They were calculated by finding where the gradients of the
objective functions are parallel. The figure is plotted in parameter space; see the figure
Mapping from Parameter Space into Objective Function Space.
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= Frontier points calculated by
   gamultiobj

= True Pareto frontier

Contours of objective functions, and Pareto frontier

gamultiobj found the ends of the line segment, meaning it found the full extent of the
Pareto frontier.
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Options and Syntax: Differences from ga

The syntax and options for gamultiobj are similar to those for ga, with the following
differences:

• gamultiobj uses only the 'penalty' algorithm for nonlinear constraints. See
“Nonlinear Constraint Solver Algorithms” on page 5-49.

• gamultiobj takes an option DistanceMeasureFcn, a function that assigns a
distance measure to each individual with respect to its neighbors.

• gamultiobj takes an option ParetoFraction, a number between 0 and 1 that
specifies the fraction of the population on the best Pareto frontier to be kept during
the optimization. If there is only one Pareto frontier, this option is ignored.

• gamultiobj uses only the Tournament selection function.
• gamultiobj uses elite individuals differently than ga. It sorts noninferior

individuals above inferior ones, so it uses elite individuals automatically.
• gamultiobj has only one hybrid function, fgoalattain.
• gamultiobj does not have a stall time limit.
• gamultiobj has different plot functions available.
• gamultiobj does not have a choice of scaling function.
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Background

In this section...

“Parallel Processing Types in Global Optimization Toolbox” on page 9-2
“How Toolbox Functions Distribute Processes” on page 9-3

Parallel Processing Types in Global Optimization Toolbox

Parallel processing is an attractive way to speed optimization algorithms. To use parallel
processing, you must have a Parallel Computing Toolbox license, and have a parallel
worker pool (parpool). For more information, see “How to Use Parallel Processing” on
page 9-12.

Global Optimization Toolbox solvers use parallel computing in various ways.

Solver Parallel? Parallel Characteristics

GlobalSearch × No parallel functionality. However, fmincon can use parallel
gradient estimation when run in GlobalSearch. See “Using
Parallel Computing in Optimization Toolbox” in the Optimization
Toolbox documentation.
Start points distributed to multiple processors. From these
points, local solvers run to completion. For more details,
see “MultiStart” on page 9-5 and “How to Use Parallel
Processing” on page 9-12.

MultiStart

For fmincon, no parallel gradient estimation with parallel
MultiStart.
Population evaluated in parallel, which occurs once per iteration.
For more details, see “Genetic Algorithm” on page 9-8 and
“How to Use Parallel Processing” on page 9-12.

ga, gamultiobj

No vectorization of fitness or constraint functions.
Population evaluated in parallel, which occurs once per iteration.
For more details, see “Particle Swarm” on page 9-10 and “How
to Use Parallel Processing” on page 9-12.

particleswarm

No vectorization of fitness or constraint functions.
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Solver Parallel? Parallel Characteristics

Poll points evaluated in parallel, which occurs once per iteration.
For more details, see “Pattern Search” on page 9-6 and “How
to Use Parallel Processing” on page 9-12.

patternsearch

No vectorization of fitness or constraint functions.
simulannealbnd × No parallel functionality. However, simulannealbnd can use a

hybrid function that runs in parallel. See “Simulated Annealing”
on page 9-11.

In addition, several solvers have hybrid functions that run after they finish. Some hybrid
functions can run in parallel. Also, most patternsearch search methods can run in
parallel. For more information, see “Parallel Search Functions or Hybrid Functions” on
page 9-15.

How Toolbox Functions Distribute Processes

• “parfor Characteristics and Caveats” on page 9-3
• “MultiStart” on page 9-5
• “GlobalSearch” on page 9-6
• “Pattern Search” on page 9-6
• “Genetic Algorithm” on page 9-8
• “Parallel Computing with gamultiobj” on page 9-9
• “Particle Swarm” on page 9-10
• “Simulated Annealing” on page 9-11

parfor Characteristics and Caveats

No Nested parfor Loops

Solvers employ the Parallel Computing Toolbox parfor function to perform parallel
computations.

Note: parfor does not work in parallel when called from within another parfor loop.

Suppose, for example, your objective function userfcn calls parfor, and you want
to call fmincon using MultiStart and parallel processing. Suppose also that the
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conditions for parallel gradient evaluation of fmincon are satisfied, as given in “Parallel
Optimization Functionality”. The figure When parfor Runs In Parallel shows three cases:

1 The outermost loop is parallel MultiStart. Only that loop runs in parallel.
2 The outermost parfor loop is in fmincon. Only fmincon runs in parallel.
3 The outermost parfor loop is in userfcn. In this case, userfcn can use parfor in

parallel.

...
problem = createOptimProblem(fmincon,'objective',@userfcn,...)
ms = MultiStart('UseParallel','always');
x = run(ms,problem,10)
...

...
x = fmincon(@userfcn,...)
...

...
x = fmincon(@userfcn,...)
...

Only the outermost parfor loop
runs in parallel

If fmincon UseParallel option = 'always'
fmincon estimates gradients in parallel

If fmincon UseParallel option = 'never'
userfcn can use parfor in parallel

Bold indicates the function that runs in parallel

1

2

3

When parfor Runs In Parallel

Parallel Random Numbers Are Not Reproducible

Random number sequences in MATLAB are pseudorandom, determined from a seed, or
an initial setting. Parallel computations use seeds that are not necessarily controllable
or reproducible. For example, each instance of MATLAB has a default global setting that
determines the current seed for random sequences.

For patternsearch, if you select MADS as a poll or search method, parallel pattern
search does not have reproducible runs. If you select the genetic algorithm or Latin
hypercube as search methods, parallel pattern search does not have reproducible runs.

For ga and gamultiobj, parallel population generation gives nonreproducible results.

MultiStart is different. You can have reproducible runs from parallel MultiStart.
Runs are reproducible because MultiStart generates pseudorandom start points



 Background

9-5

locally, and then distributes the start points to parallel processors. Therefore, the parallel
processors do not use random numbers. For more details, see “Parallel Processing and
Random Number Streams” on page 3-71.
Limitations and Performance Considerations

More caveats related to parfor appear in the “parfor Limitations” section of the Parallel
Computing Toolbox documentation.

For information on factors that affect the speed of parallel computations, and factors that
affect the results of parallel computations, see “Improving Performance with Parallel
Computing” in the Optimization Toolbox documentation. The same considerations apply
to parallel computing with Global Optimization Toolbox functions.

MultiStart

MultiStart can automatically distribute a problem and start points to multiple
processes or processors. The problems run independently, and MultiStart combines the
distinct local minima into a vector of GlobalOptimSolution objects. MultiStart uses
parallel computing when you:

• Have a license for Parallel Computing Toolbox software.
• Enable parallel computing with parpool, a Parallel Computing Toolbox function.
• Set the UseParallel property to true in the MultiStart object:

ms = MultiStart('UseParallel',true);

When these conditions hold, MultiStart distributes a problem and start points to
processes or processors one at a time. The algorithm halts when it reaches a stopping
condition or runs out of start points to distribute. If the MultiStart Display property
is 'iter', then MultiStart displays:

Running the local solvers in parallel.

For an example of parallel MultiStart, see “Parallel MultiStart” on page 3-89.
Implementation Issues in Parallel MultiStart

fmincon cannot estimate gradients in parallel when used with parallel MultiStart.
This lack of parallel gradient estimation is due to the limitation of parfor described in
“No Nested parfor Loops” on page 9-3.

fmincon can take longer to estimate gradients in parallel rather than in serial.
In this case, using MultiStart with parallel gradient estimation in fmincon
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amplifies the slowdown. For example, suppose the ms MultiStart object has
UseParallel set to false. Suppose fmincon takes 1 s longer to solve problem with
problem.options.UseParallel set to true. Then run(ms,problem,200) takes 200
s longer than the same run with problem.options.UseParallel set to false

Note: When executing serially, parfor loops run slower than for loops. Therefore,
for best performance, set your local solver UseParallel option to false when the
MultiStart UseParallel property is true.

Note: Even when running in parallel, a solver occasionally calls the objective and
nonlinear constraint functions serially on the host machine. Therefore, ensure that your
functions have no assumptions about whether they are evaluated in serial and parallel.

GlobalSearch

GlobalSearch does not distribute a problem and start points to multiple processes or
processors. However, when GlobalSearch runs the fmincon local solver, fmincon can
estimate gradients by parallel finite differences. fmincon uses parallel computing when
you:

• Have a license for Parallel Computing Toolbox software.
• Enable parallel computing with parpool, a Parallel Computing Toolbox function.
• Set the UseParallel option to true with optimoptions. Set this option in the

problem structure:

opts = optimoptions(@fmincon,'UseParallel',true,'Algorithm','sqp');

problem = createOptimProblem('fmincon','objective',@myobj,...

    'x0',startpt,'options',opts);

For more details, see “Using Parallel Computing in Optimization Toolbox” in the
Optimization Toolbox documentation.

Pattern Search

patternsearch can automatically distribute the evaluation of objective and constraint
functions associated with the points in a pattern to multiple processes or processors.
patternsearch uses parallel computing when you:

• Have a license for Parallel Computing Toolbox software.
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• Enable parallel computing with parpool, a Parallel Computing Toolbox function.
• Set the following options using psoptimset or the Optimization app:

• CompletePoll is 'on'.
• Vectorized is 'off' (default).
• UseParallel is true.

When these conditions hold, the solver computes the objective function and constraint
values of the pattern search in parallel during a poll. Furthermore, patternsearch
overrides the setting of the Cache option, and uses the default 'off' setting.

Note: Even when running in parallel, patternsearch occasionally calls the objective
and nonlinear constraint functions serially on the host machine. Therefore, ensure
that your functions have no assumptions about whether they are evaluated in serial or
parallel.

Parallel Search Function

patternsearch can optionally call a search function at each iteration. The search is
parallel when you:

• Set CompleteSearch to 'on'.
• Do not set the search method to @searchneldermead or custom.
• Set the search method to a patternsearch poll method or Latin hypercube search,

and set UseParallel to true.
• Or, if you set the search method to ga, create a search method option structure with

UseParallel set to true.

Implementation Issues in Parallel Pattern Search

The limitations on patternsearch options, listed in “Pattern Search” on page 9-6,
arise partly from the limitations of parfor, and partly from the nature of parallel
processing:

• Cache is overridden to be 'off' — patternsearch implements Cache as a
persistent variable. parfor does not handle persistent variables, because the variable
could have different settings at different processors.
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• CompletePoll is 'on' — CompletePoll determines whether a poll stops as soon as
patternsearch finds a better point. When searching in parallel, parfor schedules
all evaluations simultaneously, and patternsearch continues after all evaluations
complete. patternsearch cannot halt evaluations after they start.

• Vectorized is 'off' — Vectorized determines whether patternsearch
evaluates all points in a pattern with one function call in a vectorized fashion. If
Vectorized is 'on', patternsearch does not distribute the evaluation of the
function, so does not use parfor.

Genetic Algorithm

ga and gamultiobj can automatically distribute the evaluation of objective and
nonlinear constraint functions associated with a population to multiple processors. ga
uses parallel computing when you:

• Have a license for Parallel Computing Toolbox software.
• Enable parallel computing with parpool, a Parallel Computing Toolbox function.
• Set the following options using gaoptimset or the Optimization app:

• Vectorized is 'off' (default).
• UseParallel is true.

When these conditions hold, ga computes the objective function and nonlinear constraint
values of the individuals in a population in parallel.

Note: Even when running in parallel, ga occasionally calls the fitness and nonlinear
constraint functions serially on the host machine. Therefore, ensure that your functions
have no assumptions about whether they are evaluated in serial or parallel.

Implementation Issues in Parallel Genetic Algorithm

The limitations on options, listed in “Genetic Algorithm” on page 9-8, arise partly
from limitations of parfor, and partly from the nature of parallel processing:

• Vectorized is 'off' — Vectorized determines whether ga evaluates an entire
population with one function call in a vectorized fashion. If Vectorized is 'on', ga
does not distribute the evaluation of the function, so does not use parfor.
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ga can have a hybrid function that runs after it finishes; see “Include a Hybrid Function”
on page 5-104. If you want the hybrid function to take advantage of parallel computation,
set its options separately so that UseParallel is true. If the hybrid function is
patternsearch, set CompletePoll to 'on' so that patternsearch runs in parallel.

If the hybrid function is fmincon, set the following options with optimoptions to have
parallel gradient estimation:

• GradObj must not be 'on' — it can be 'off' or [].
• Or, if there is a nonlinear constraint function, GradConstr must not be 'on' — it

can be 'off' or [].

To find out how to write options for the hybrid function, see “Parallel Hybrid Functions”
on page 9-17.

Parallel Computing with gamultiobj

Parallel computing with gamultiobj works almost the same as with ga. For detailed
information, see “Genetic Algorithm” on page 9-8.

The difference between parallel computing with gamultiobj and ga has to do with
the hybrid function. gamultiobj allows only one hybrid function, fgoalattain. This
function optionally runs after gamultiobj finishes its run. Each individual in the
calculated Pareto frontier, that is, the final population found by gamultiobj, becomes
the starting point for an optimization using fgoalattain. These optimizations run in
parallel. The number of processors performing these optimizations is the smaller of the
number of individuals and the size of your parpool.

For fgoalattain to run in parallel, set its options correctly:

fgoalopts = optimoptions(@fgoalattain,'UseParallel',true)

gaoptions = gaoptimset('HybridFcn',{@fgoalattain,fgoalopts});

Run gamultiobj with gaoptions, and fgoalattain runs in parallel. For more
information about setting the hybrid function, see “Hybrid Function Options” on page
10-49.

gamultiobj calls fgoalattain using a parfor loop, so fgoalattain does not
estimate gradients in parallel when used as a hybrid function with gamultiobj. For
more information, see “No Nested parfor Loops” on page 9-3.
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Particle Swarm

particleswarm can automatically distribute the evaluation of the objective function
associated with a population to multiple processors. particleswarm uses parallel
computing when you:

• Have a license for Parallel Computing Toolbox software.
• Enable parallel computing with parpool, a Parallel Computing Toolbox function.
• Set the following options using optimoptions:

• Vectorized is 'off' (default).
• UseParallel is true.

When these conditions hold, particleswarm computes the objective function of the
particles in a population in parallel.

Note: Even when running in parallel, particleswarm occasionally calls the objective
function serially on the host machine. Therefore, ensure that your objective function has
no assumptions about whether it is evaluated in serial or parallel.

Implementation Issues in Parallel Particle Swarm Optimization

The limitations on options, listed in “Particle Swarm” on page 9-10, arise partly from
limitations of parfor, and partly from the nature of parallel processing:

• Vectorized is 'off' — Vectorized determines whether particleswarm
evaluates an entire population with one function call in a vectorized fashion. If
Vectorized is 'on', particleswarm does not distribute the evaluation of the
function, so does not use parfor.

particleswarm can have a hybrid function that runs after it finishes; see “Include a
Hybrid Function” on page 5-104. If you want the hybrid function to take advantage of
parallel computation, set its options separately so that UseParallel is true. If the
hybrid function is patternsearch, set CompletePoll to 'on' so that patternsearch
runs in parallel.

If the hybrid function is fmincon, set the GradObj option to 'off' or [] with
optimoptions to have parallel gradient estimation.
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To find out how to write options for the hybrid function, see “Parallel Hybrid Functions”
on page 9-17.

Simulated Annealing

simulannealbnd does not run in parallel automatically. However, it can call hybrid
functions that take advantage of parallel computing. To find out how to write options for
the hybrid function, see “Parallel Hybrid Functions” on page 9-17.
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How to Use Parallel Processing

In this section...

“Multicore Processors” on page 9-12
“Processor Network” on page 9-13
“Parallel Search Functions or Hybrid Functions” on page 9-15

Multicore Processors

If you have a multicore processor, you might see speedup using parallel processing.
You can establish a parallel pool of several workers with a Parallel Computing Toolbox
license. For a description of Parallel Computing Toolbox software, see “Getting Started
with Parallel Computing Toolbox”.

Suppose you have a dual-core processor, and want to use parallel computing:

• Enter

parpool

at the command line. MATLAB starts a pool of workers using the multicore processor.
If you had previously set a nondefault cluster profile, you can enforce multicore (local)
computing:

parpool('local')

Note: Depending on your preferences, MATLAB can start a parallel pool
automatically. To enable this feature, check Automatically create a parallel pool
in Home > Parallel > Parallel Preferences.

• Set your solver to use parallel processing.

MultiStart patternsearch ga particleswarm

ms =

MultiStart('UseParallel',

true);

or

options =

psoptimset('UseParallel',

true,

'CompletePoll',

'on',

options =

gaoptimset('UseParallel',

true,

'Vectorized',

'off');

options =

optimoptions('particleswarm',

'UseParallel',

true,

'Vectorized',

'off');
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MultiStart patternsearch ga particleswarm

ms.UseParallel =

true

'Vectorized',

'off');

  For Optimization app:

• Options >
User function
evaluation
> Evaluate
objective and
constraint
functions > in
parallel

• Options >
Complete poll >
on

For Optimization app:

• Options >
User function
evaluation >
Evaluate fitness
and constraint
functions > in
parallel

 

When you run an applicable solver with options, applicable solvers automatically use
parallel computing.

To stop computing optimizations in parallel, set UseParallel to false, or set the
Optimization app not to compute in parallel. To halt all parallel computation, enter

delete(gcp)

Processor Network

If you have multiple processors on a network, use Parallel Computing Toolbox
functions and MATLAB Distributed Computing Server™ software to establish parallel
computation. Here are the steps to take:

1 Make sure your system is configured properly for parallel computing. Check
with your systems administrator, or refer to the Parallel Computing Toolbox
documentation.

To perform a basic check:

a At the command line, enter

parpool(prof)
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where prof is your cluster profile.
b Workers must be able to access your objective function file and, if applicable,

your nonlinear constraint function file. There are two ways of ensuring access:

i Distribute the files to the workers using the parpool AttachedFiles
argument. For example, if objfun.m is your objective function file, and
constrfun.m is your nonlinear constraint function file, enter

parpool('AttachedFiles',{'objfun.m','constrfun.m'});

Workers access their own copies of the files.
ii Give a network file path to your files. If network_file_path is the

network path to your objective or constraint function files, enter

pctRunOnAll('addpath network_file_path')

Workers access the function files over the network.
c Check whether a file is on the path of every worker by entering

pctRunOnAll('which filename')

If any worker does not have a path to the file, it reports

filename not found.

2 Set your solver to use parallel processing.

MultiStart patternsearch ga particleswarm

ms =

MultiStart('UseParallel',

true);

or

ms.UseParallel =

true

options =

psoptimset('UseParallel',

true,

'CompletePoll',

'on',

'Vectorized',

'off');

options =

gaoptimset('UseParallel',

true,

'Vectorized',

'off');

options =

optimoptions('particleswarm',

'UseParallel',

true,

'Vectorized',

'off');

  For Optimization app:

• Options >
User function
evaluation
> Evaluate

For Optimization app:

• Options >
User function
evaluation >
Evaluate fitness
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MultiStart patternsearch ga particleswarm

objective and
constraint
functions > in
parallel

• Options >
Complete poll >
on

and constraint
functions > in
parallel

After you establish your parallel computing environment, applicable solvers
automatically use parallel computing whenever you call them with options.

To stop computing optimizations in parallel, set UseParallel to false, or set the
Optimization app not to compute in parallel. To halt all parallel computation, enter

delete(gcp)

Parallel Search Functions or Hybrid Functions

To have a patternsearch search function run in parallel, or a hybrid function for ga or
simulannealbnd run in parallel, do the following.

1 Set up parallel processing as described in “Multicore Processors” on page 9-12 or
“Processor Network” on page 9-13.

2 Ensure that your search function or hybrid function has the conditions outlined in
these sections:

• “patternsearch Search Function” on page 9-15
• “Parallel Hybrid Functions” on page 9-17

patternsearch Search Function

patternsearch uses a parallel search function under the following conditions:

• CompleteSearch is 'on'.
• The search method is not @searchneldermead or custom.
• If the search method is a patternsearch poll method or Latin hypercube search,

UseParallel is true. Set at the command line with psoptimset:
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options = psoptimset('UseParallel',true,...

    'CompleteSearch','on','SearchMethod',@GPSPositiveBasis2N);

Or you can use the Optimization app.

• If the search method is ga, the search method option structure has UseParallel set
to true. Set at the command line with psoptimset and gaoptimset:

iterlim = 1; % iteration limit, specifies # ga runs

gaopt = gaoptimset('UseParallel',true);

options = psoptimset('SearchMethod',...

    {@searchga,iterlim,gaopt});

In the Optimization app, first create the gaopt structure as above, and then use these
settings:

For more information about search functions, see “Using a Search Method” on page 4-32.
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Parallel Hybrid Functions

ga, particleswarm, and simulannealbnd can have other solvers run after or
interspersed with their iterations. These other solvers are called hybrid functions. For
information on using a hybrid function with gamultiobj, see “Parallel Computing with
gamultiobj” on page 9-9. Both patternsearch and fmincon can be hybrid functions.
You can set options so that patternsearch runs in parallel, or fmincon estimates
gradients in parallel.

Set the options for the hybrid function as described in “Hybrid Function Options” on page
10-49 for ga, “Hybrid Function” on page 10-57 for particleswarm, or “Hybrid
Function Options” on page 10-66 for simulannealbnd. To summarize:

• If your hybrid function is patternsearch

1 Create a patternsearch options structure:

hybridopts = psoptimset('UseParallel',true,...

    'CompletePoll','on');

2 Set the ga or simulannealbnd options to use patternsearch as a hybrid
function:

options = gaoptimset('UseParallel',true); % for ga

options = gaoptimset(options,...

    'HybridFcn',{@patternsearch,hybridopts});

% or, for simulannealbnd:

options = saoptimset('HybridFcn',{@patternsearch,hybridopts});

Or use the Optimization app.

For more information on parallel patternsearch, see “Pattern Search” on page 9-6.
• If your hybrid function is fmincon:

1 Create a fmincon options structure:
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hybridopts = optimoptions(@fmincon,'UseParallel',true,...

    'Algorithm','interior-point');

% You can use any Algorithm except trust-region-reflective

2 Set the ga or simulannealbnd options to use fmincon as a hybrid function:

options = gaoptimset('UseParallel',true);

options = gaoptimset(options,'HybridFcn',{@fmincon,hybridopts});

% or, for simulannealbnd:

options = saoptimset('HybridFcn',{@fmincon,hybridopts});

Or use the Optimization app.

For more information on parallel fmincon, see “Parallel Computing”.
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Minimizing an Expensive Optimization Problem Using Parallel
Computing Toolbox™

This example shows how to how to speed up the minimization of an expensive
optimization problem using functions in Optimization Toolbox™ and Global Optimization
Toolbox. In the first part of the example we solve the optimization problem by evaluating
functions in a serial fashion and in the second part of the example we solve the same
problem using the parallel for loop (parfor) feature by evaluating functions in parallel.
We compare the time taken by the optimization function in both cases.

Expensive Optimization Problem

For the purpose of this example, we solve a problem in four variables, where the objective
and constraint functions are made artificially expensive by pausing.

type expensive_objfun.m

type expensive_confun.m

function f = expensive_objfun(x)

%EXPENSIVE_OBJFUN An expensive objective function used in optimparfor example.

%   Copyright 2007-2014 The MathWorks, Inc.

%   $Revision: 1.1.8.2 $  $Date: 2013/05/04 00:47:14 $

% Simulate an expensive function by pausing

pause(0.1)

% Evaluate objective function

f = exp(x(1)) * (4*x(3)^2 + 2*x(4)^2 + 4*x(1)*x(2) + 2*x(2) + 1);

function [c,ceq] = expensive_confun(x)

%EXPENSIVE_CONFUN An expensive constraint function used in optimparfor example.

%   Copyright 2007-2014 The MathWorks, Inc.

%   $Revision: 1.1.8.2 $  $Date: 2013/05/04 00:47:13 $

% Simulate an expensive function by pausing

pause(0.1);

% Evaluate constraints

c = [1.5 + x(1)*x(2)*x(3) - x(1) - x(2) - x(4); 

     -x(1)*x(2) + x(4) - 10];

% No nonlinear equality constraints:

ceq = [];
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Minimizing Using fmincon

We are interested in measuring the time taken by fmincon in serial so that we can
compare it to the parallel fmincon evaluation.

startPoint = [-1 1 1 -1];

options = optimoptions('fmincon','Display','iter','Algorithm','sqp');

startTime = tic;

xsol = fmincon(@expensive_objfun,startPoint,[],[],[],[],[],[],@expensive_confun,options);

time_fmincon_sequential = toc(startTime);

fprintf('Serial FMINCON optimization takes %g seconds.\n',time_fmincon_sequential);

                                                          Norm of First-order

 Iter F-count            f(x) Feasibility  Steplength        step  optimality

    0       5    1.839397e+00   1.500e+00                           3.311e+00

    1      12   -8.841073e-01   4.019e+00   4.900e-01   2.335e+00   7.015e-01

    2      17   -1.382832e+00   0.000e+00   1.000e+00   1.142e+00   9.272e-01

    3      22   -2.241952e+00   0.000e+00   1.000e+00   2.447e+00   1.481e+00

    4      27   -3.145762e+00   0.000e+00   1.000e+00   1.756e+00   5.464e+00

    5      32   -5.277523e+00   6.413e+00   1.000e+00   2.224e+00   1.357e+00

    6      37   -6.310709e+00   0.000e+00   1.000e+00   1.099e+00   1.309e+00

    7      43   -6.447956e+00   0.000e+00   7.000e-01   2.191e+00   3.631e+00

    8      48   -7.135133e+00   0.000e+00   1.000e+00   3.719e-01   1.205e-01

    9      53   -7.162732e+00   0.000e+00   1.000e+00   4.083e-01   2.935e-01

   10      58   -7.178390e+00   0.000e+00   1.000e+00   1.591e-01   3.110e-02

   11      63   -7.180399e+00   1.191e-05   1.000e+00   2.644e-02   1.553e-02

   12      68   -7.180408e+00   0.000e+00   1.000e+00   1.140e-02   5.584e-03

   13      73   -7.180411e+00   0.000e+00   1.000e+00   1.764e-03   4.677e-04

   14      78   -7.180412e+00   0.000e+00   1.000e+00   8.827e-05   1.304e-05

   15      83   -7.180412e+00   0.000e+00   1.000e+00   1.528e-06   1.023e-07

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in 

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

Serial FMINCON optimization takes 18.1397 seconds.

Minimizing Using Genetic Algorithm

Since ga usually takes many more function evaluations than fmincon, we remove
the expensive constraint from this problem and perform unconstrained optimization
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instead; we pass empty ([]) for constraints. In addition, we limit the maximum number of
generations to 15 for ga so that ga can terminate in a reasonable amount of time. We are
interested in measuring the time taken by ga so that we can compare it to the parallel ga
evaluation. Note that running ga requires Global Optimization Toolbox.

rng default % for reproducibility

try

    gaAvailable = false;

    nvar = 4;

    gaoptions = gaoptimset('Generations',15,'Display','iter');

    startTime = tic;

    gasol = ga(@expensive_objfun,nvar,[],[],[],[],[],[],[],gaoptions);

    time_ga_sequential = toc(startTime);

    fprintf('Serial GA optimization takes %g seconds.\n',time_ga_sequential);

    gaAvailable = true;

catch ME

    warning(message('optimdemos:optimparfor:gaNotFound'));

end

                               Best           Mean      Stall

Generation      f-count        f(x)           f(x)    Generations

    1           100      -6.433e+16      -1.287e+15        0

    2           150      -1.501e+17      -7.138e+15        0

    3           200      -7.878e+26      -1.576e+25        0

    4           250      -8.664e+27      -1.466e+26        0

    5           300      -1.096e+28      -2.062e+26        0

    6           350      -5.422e+33      -1.145e+32        0

    7           400      -1.636e+36      -3.316e+34        0

    8           450      -2.933e+36      -1.513e+35        0

    9           500      -1.351e+40      -2.705e+38        0

   10           550      -1.351e+40        -7.9e+38        1

   11           600       -2.07e+40      -2.266e+39        0

   12           650      -1.845e+44      -3.696e+42        0

   13           700      -2.893e+44      -1.687e+43        0

   14           750      -5.076e+44      -6.516e+43        0

   15           800      -8.321e+44      -2.225e+44        0

Optimization terminated: maximum number of generations exceeded.

Serial GA optimization takes 87.3686 seconds.

Setting Parallel Computing Toolbox

The finite differencing used by the functions in Optimization Toolbox to approximate
derivatives is done in parallel using the parfor feature if Parallel Computing Toolbox



9 Parallel Processing

9-22

is available and there is a parallel pool of workers. Similarly, ga, gamultiobj,
and patternsearch solvers in Global Optimization Toolbox evaluate functions in
parallel. To use the parfor feature, we use the parpool function to set up the parallel
environment. The computer on which this example is published has four cores, so
parpool starts four MATLAB® workers. If there is already a parallel pool when you run
this example, we use that pool; see the documentation for parpool for more information.

if max(size(gcp)) == 0 % parallel pool needed

    parpool % create the parallel pool

end

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.

Minimizing Using Parallel fmincon

To minimize our expensive optimization problem using the parallel fmincon function,
we need to explicitly indicate that our objective and constraint functions can be evaluated
in parallel and that we want fmincon to use its parallel functionality wherever possible.
Currently, finite differencing can be done in parallel. We are interested in measuring the
time taken by fmincon so that we can compare it to the serial fmincon run.

options = optimoptions(options,'UseParallel',true);

startTime = tic;

xsol = fmincon(@expensive_objfun,startPoint,[],[],[],[],[],[],@expensive_confun,options);

time_fmincon_parallel = toc(startTime);

fprintf('Parallel FMINCON optimization takes %g seconds.\n',time_fmincon_parallel);

                                                          Norm of First-order

 Iter F-count            f(x) Feasibility  Steplength        step  optimality

    0       5    1.839397e+00   1.500e+00                           3.311e+00

    1      12   -8.841073e-01   4.019e+00   4.900e-01   2.335e+00   7.015e-01

    2      17   -1.382832e+00   0.000e+00   1.000e+00   1.142e+00   9.272e-01

    3      22   -2.241952e+00   0.000e+00   1.000e+00   2.447e+00   1.481e+00

    4      27   -3.145762e+00   0.000e+00   1.000e+00   1.756e+00   5.464e+00

    5      32   -5.277523e+00   6.413e+00   1.000e+00   2.224e+00   1.357e+00

    6      37   -6.310709e+00   0.000e+00   1.000e+00   1.099e+00   1.309e+00

    7      43   -6.447956e+00   0.000e+00   7.000e-01   2.191e+00   3.631e+00

    8      48   -7.135133e+00   0.000e+00   1.000e+00   3.719e-01   1.205e-01

    9      53   -7.162732e+00   0.000e+00   1.000e+00   4.083e-01   2.935e-01

   10      58   -7.178390e+00   0.000e+00   1.000e+00   1.591e-01   3.110e-02

   11      63   -7.180399e+00   1.191e-05   1.000e+00   2.644e-02   1.553e-02

   12      68   -7.180408e+00   0.000e+00   1.000e+00   1.140e-02   5.584e-03

   13      73   -7.180411e+00   0.000e+00   1.000e+00   1.764e-03   4.677e-04

   14      78   -7.180412e+00   0.000e+00   1.000e+00   8.827e-05   1.304e-05

   15      83   -7.180412e+00   0.000e+00   1.000e+00   1.528e-06   1.023e-07
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Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in 

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

Parallel FMINCON optimization takes 8.78988 seconds.

Minimizing Using Parallel Genetic Algorithm

To minimize our expensive optimization problem using the ga function, we need to
explicitly indicate that our objective function can be evaluated in parallel and that we
want ga to use its parallel functionality wherever possible. To use the parallel ga we
also require that the 'Vectorized' option be set to the default (i.e., 'off'). We are again
interested in measuring the time taken by ga so that we can compare it to the serial ga
run. Though this run may be different from the serial one because ga uses a random
number generator, the number of expensive function evaluations is the same in both
runs. Note that running ga requires Global Optimization Toolbox.

rng default % to get the same evaluations as the previous run

if gaAvailable

    gaoptions = gaoptimset(gaoptions,'UseParallel',true);

    startTime = tic;

    gasol = ga(@expensive_objfun,nvar,[],[],[],[],[],[],[],gaoptions);

    time_ga_parallel = toc(startTime);

    fprintf('Parallel GA optimization takes %g seconds.\n',time_ga_parallel);

end

                               Best           Mean      Stall

Generation      f-count        f(x)           f(x)    Generations

    1           100      -6.433e+16      -1.287e+15        0

    2           150      -1.501e+17      -7.138e+15        0

    3           200      -7.878e+26      -1.576e+25        0

    4           250      -8.664e+27      -1.466e+26        0

    5           300      -1.096e+28      -2.062e+26        0

    6           350      -5.422e+33      -1.145e+32        0

    7           400      -1.636e+36      -3.316e+34        0

    8           450      -2.933e+36      -1.513e+35        0

    9           500      -1.351e+40      -2.705e+38        0

   10           550      -1.351e+40        -7.9e+38        1
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   11           600       -2.07e+40      -2.266e+39        0

   12           650      -1.845e+44      -3.696e+42        0

   13           700      -2.893e+44      -1.687e+43        0

   14           750      -5.076e+44      -6.516e+43        0

   15           800      -8.321e+44      -2.225e+44        0

Optimization terminated: maximum number of generations exceeded.

Parallel GA optimization takes 23.707 seconds.

Compare Serial and Parallel Time

X = [time_fmincon_sequential time_fmincon_parallel];

Y = [time_ga_sequential time_ga_parallel];

t = [0 1];

plot(t,X,'r--',t,Y,'k-')

ylabel('Time in seconds')

legend('fmincon','ga')

ax = gca;

ax.XTick = [0 1];

ax.XTickLabel = {'Serial' 'Parallel'};

axis([0 1 0 ceil(max([X Y]))])

title('Serial Vs. Parallel Times')
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Utilizing parallel function evaluation via parfor improved the efficiency of both
fmincon and ga. The improvement is typically better for expensive objective and
constraint functions.

At last we delete the parallel pool.

if max(size(gcp)) > 0 % parallel pool exists

    delete(gcp) % delete the pool

end

Parallel pool using the 'local' profile is shutting down.
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Options Reference

• “GlobalSearch and MultiStart Properties (Options)” on page 10-2
• “Pattern Search Options” on page 10-9
• “Genetic Algorithm Options” on page 10-28
• “Particle Swarm Options” on page 10-54
• “Simulated Annealing Options” on page 10-62
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GlobalSearch and MultiStart Properties (Options)

In this section...

“How to Set Properties” on page 10-2
“Properties of Both Objects” on page 10-2
“GlobalSearch Properties” on page 10-6
“MultiStart Properties” on page 10-7

How to Set Properties

To create a GlobalSearch or MultiStart object with nondefault properties, use name-
value pairs. For example, to create a GlobalSearch object that has iterative display and
runs only from feasible points with respect to bounds and inequalities, enter

gs = GlobalSearch('Display','iter', ...

    'StartPointsToRun','bounds-ineqs');

To set a property of an existing GlobalSearch or MultiStart object, use dot notation.
For example, if ms is a MultiStart object, and you want to set the Display property to
'iter', enter

ms.Display = 'iter';

To set multiple properties of an existing object simultaneously, use the constructor
(GlobalSearch or MultiStart) with name-value pairs. For example, to set the
Display property to 'iter' and the MaxTime property to 100, enter

ms = MultiStart(ms,'Display','iter','MaxTime',100);

For more information on setting properties, see “Changing Global Options” on page 3-67.

Properties of Both Objects

You can create a MultiStart object from a GlobalSearch object and vice-versa.

The syntax for creating a new object from an existing object is:

ms =  MultiStart(gs);
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or

gs = GlobalSearch(ms);

The new object contains the properties that apply of the old object. This section describes
those shared properties:

• “Display” on page 10-3
• “MaxTime” on page 10-3
• “OutputFcns” on page 10-3
• “PlotFcns” on page 10-5
• “StartPointsToRun” on page 10-5
• “TolX” on page 10-5
• “TolFun” on page 10-6

Display

Values for the Display property are:

• 'final' (default) — Summary results to command line after last solver run.
• 'off' — No output to command line.
• 'iter' — Summary results to command line after each local solver run.

MaxTime

The MaxTime property describes a tolerance on the number of seconds since the solver
began its run. Solvers halt when they see MaxTime seconds have passed since the
beginning of the run. Time means wall clock as opposed to processor cycles. The default
is Inf.

OutputFcns

The OutputFcns property directs the global solver to run one or more output functions
after each local solver run completes. The output functions also run when the global
solver starts and ends. Include a handle to an output function written in the appropriate
syntax, or include a cell array of such handles. The default is empty ([]).

The syntax of an output function is:

stop = outFcn(optimValues,state)
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• stop is a Boolean. When true, the algorithm stops. When false, the algorithm
continues.

Note: A local solver can have an output function. The global solver does not
necessarily stop when a local solver output function causes a local solver run to
stop. If you want the global solver to stop in this case, have the global solver output
function stop when optimValues.localsolution.exitflag=-1.

• optimValues is a structure, described in “optimvalues Structure” on page 10-4.
• state is a string that indicates the current state of the global algorithm:

• 'init' — The global solver has not called the local solver. The fields in the
optimValues structure are empty, except for localrunindex, which is 0, and
funccount, which contains the number of objective and constraint function
evaluations.

• 'iter' — The global solver calls output functions after each local solver run.
• 'done' — The global solver finished calling local solvers. The fields

in optimValues generally have the same values as the ones from the
final output function call with state='iter'. However, the value of
optimValues.funccount for GlobalSearch can be larger than the value in the
last function call with 'iter', because the GlobalSearch algorithm might have
performed some function evaluations that were not part of a local solver. For more
information, see “GlobalSearch Algorithm” on page 3-46.

For an example using an output function, see “GlobalSearch Output Function” on page
3-37.

Note: Output and plot functions do not run when MultiStart has the UseParallel
option set to true and there is an open parpool.

optimvalues Structure

The optimValues structure contains the following fields:

• bestx — The current best point
• bestfval — Objective function value at bestx
• funccount — Total number of function evaluations
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• localrunindex — Index of the local solver run
• localsolution — A structure containing part of the output of the local solver call:

X, Fval and Exitflag

PlotFcns

The PlotFcns property directs the global solver to run one or more plot functions
after each local solver run completes. Include a handle to a plot function written in the
appropriate syntax, or include a cell array of such handles. The default is empty ([]).

The syntax of a plot function is the same as that of an output function. For details, see
“OutputFcns” on page 10-3.

There are two predefined plot functions for the global solvers:

• @gsplotbestf plots the best objective function value.
• @gsplotfunccount plots the number of function evaluations.

For an example using a plot function, see “MultiStart Plot Function” on page 3-41.

If you specify more than one plot function, all plots appear as subplots in the same
window. Right-click any subplot to obtain a larger version in a separate figure window.

Note: Output and plot functions do not run when MultiStart has the UseParallel
option set to true and there is an open parpool.

StartPointsToRun

The StartPointsToRun property directs the solver to exclude certain start points from
being run:

• all — Accept all start points.
• bounds — Reject start points that do not satisfy bounds.
• bounds-ineqs — Reject start points that do not satisfy bounds or inequality

constraints.

TolX

The TolX property describes how close two points must be for solvers to consider them
identical for creating the vector of local solutions. Set TolX to 0 to obtain the results of
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every local solver run. Set TolX to a larger value to have fewer results. Solvers compute
the distance between a pair of points with norm, the Euclidean distance.

Solvers consider two solutions identical if they are within TolX distance of each other
and have objective function values within TolFun of each other. If both conditions are
not met, solvers report the solutions as distinct.

TolFun

The TolFun property describes how close two objective function values must be for
solvers to consider them identical for creating the vector of local solutions. Set TolFun
to 0 to obtain the results of every local solver run. Set TolFun to a larger value to have
fewer results.

Solvers consider two solutions identical if they are within TolX distance of each other
and have objective function values within TolFun of each other. If both conditions are
not met, solvers report the solutions as distinct.

GlobalSearch Properties

• “NumTrialPoints” on page 10-6
• “NumStageOnePoints” on page 10-6
• “MaxWaitCycle” on page 10-7
• “BasinRadiusFactor” on page 10-7
• “DistanceThresholdFactor” on page 10-7
• “PenaltyThresholdFactor” on page 10-7

NumTrialPoints

Number of potential start points to examine in addition to x0 from the problem
structure. GlobalSearch runs only those potential start points that pass several tests.
For more information, see “GlobalSearch Algorithm” on page 3-46.

Default: 1000

NumStageOnePoints

Number of start points in Stage 1. For details, see “Obtain Stage 1 Start Point, Run” on
page 3-47.
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Default: 200

MaxWaitCycle

A positive integer tolerance appearing in several points in the algorithm.

• If the observed penalty function of MaxWaitCycle consecutive trial points is at least
the penalty threshold, then raise the penalty threshold (see “PenaltyThresholdFactor”
on page 10-7).

• If MaxWaitCycle consecutive trial points are in a basin, then update that basin's
radius (see “BasinRadiusFactor” on page 10-7).

Default: 20

BasinRadiusFactor

A basin radius decreases after MaxWaitCycle consecutive start points are within the
basin. The basin radius decreases by a factor of 1–BasinRadiusFactor.

Default: 0.2

DistanceThresholdFactor

A multiplier for determining whether a trial point is in an existing basin of attraction.
For details, see “Examine Stage 2 Trial Point to See if fmincon Runs” on page 3-48.
Default: 0.75

PenaltyThresholdFactor

Determines increase in penalty threshold. For details, see React to Large Counter
Values.

Default: 0.2

MultiStart Properties

UseParallel

The UseParallel property determines whether the solver distributes start points to
multiple processors:

• false (default) — Do not run in parallel.
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• true — Run in parallel.

For the solver to run in parallel you must set up a parallel environment with parpool.
For details, see “How to Use Parallel Processing” on page 9-12.
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Pattern Search Options

In this section...

“Optimization App vs. Command Line” on page 10-9
“Plot Options” on page 10-10
“Poll Options” on page 10-12
“Search Options” on page 10-13
“Mesh Options” on page 10-17
“Constraint Parameters” on page 10-19
“Cache Options” on page 10-19
“Stopping Criteria” on page 10-20
“Output Function Options” on page 10-21
“Display to Command Window Options” on page 10-23
“Vectorize and Parallel Options (User Function Evaluation)” on page 10-24
“Options Table for Pattern Search Algorithms” on page 10-25

Optimization App vs. Command Line

There are two ways to specify options for pattern search, depending on whether you are
using the Optimization app or calling the function patternsearch at the command line:

• If you are using the Optimization app, you specify the options by selecting an option
from a drop-down list or by entering the value of the option in the text field.

• If you are calling patternsearch from the command line, you specify the options by
creating an options structure using the function psoptimset, as follows:

options = psoptimset('Param1',value1,'Param2',value2,...);

See “Set Options” on page 4-44 for examples.

In this section, each option is listed in two ways:

• By its label, as it appears in the Optimization app
• By its field name in the options structure
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For example:

• Poll method refers to the label of the option in the Optimization app.
• PollMethod refers to the corresponding field of the options structure.

Plot Options

Plot options enable you to plot data from the pattern search while it is running. When
you select plot functions and run the pattern search, a plot window displays the plots on
separate axes. You can stop the algorithm at any time by clicking the Stop button on the
plot window.

Plot interval (PlotInterval) specifies the number of iterations between consecutive
calls to the plot function.

You can select any of the following plots in the Plot functions pane.

• Best function value (@psplotbestf) plots the best objective function value.
• Function count (@psplotfuncount) plots the number of function evaluations.
• Mesh size (@psplotmeshsize) plots the mesh size.
• Best point (@psplotbestx) plots the current best point.
• Max constraint (@psplotmaxconstr) plots the maximum nonlinear constraint

violation.
• Custom enables you to use your own plot function. To specify the plot function using

the Optimization app,

• Select Custom function.
• Enter @myfun in the text box, where myfun is the name of your function.

“Structure of the Plot Functions” on page 10-11 describes the structure of a plot
function.

To display a plot when calling patternsearch from the command line, set the
PlotFcns field of options to be a function handle to the plot function. For example, to
display the best function value, set options as follows

options = psoptimset('PlotFcns', @psplotbestf);

To display multiple plots, use the syntax
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options = psoptimset('PlotFcns', {@plotfun1, @plotfun2, ...});

where @plotfun1, @plotfun2, and so on are function handles to the plot functions
(listed in parentheses in the preceding list).

If you specify more than one plot function, all plots appear as subplots in the same
window. Right-click any subplot to obtain a larger version in a separate figure window.

Structure of the Plot Functions

The first line of a plot function has the form

function stop = plotfun(optimvalues, flag)

The input arguments to the function are

• optimvalues — Structure containing information about the current state of the
solver. The structure contains the following fields:

• x — Current point
• iteration — Iteration number
• fval — Objective function value
• meshsize — Current mesh size
• funccount — Number of function evaluations
• method — Method used in last iteration
• TolFun — Tolerance on function value in last iteration
• TolX — Tolerance on x value in last iteration
• nonlinineq — Nonlinear inequality constraints, displayed only when a nonlinear

constraint function is specified
• nonlineq — Nonlinear equality constraints, displayed only when a nonlinear

constraint function is specified
• flag — Current state in which the plot function is called. The possible values for

flag are

• init — Initialization state
• iter — Iteration state
• interrupt — Intermediate stage
• done — Final state
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“Passing Extra Parameters” in the Optimization Toolbox documentation explains how to
provide additional parameters to the function.

The output argument stop provides a way to stop the algorithm at the current iteration.
stop can have the following values:

• false — The algorithm continues to the next iteration.
• true — The algorithm terminates at the current iteration.

Poll Options

Poll options control how the pattern search polls the mesh points at each iteration.

Poll method (PollMethod) specifies the pattern the algorithm uses to create the mesh.
There are two patterns for each of the classes of direct search algorithms: the generalized
pattern search (GPS) algorithm, the generating set search (GSS) algorithm, and the
mesh adaptive direct search (MADS) algorithm. These patterns are the Positive basis 2N
and the Positive basis N+1:

• The default pattern, GPS Positive basis 2N (GPSPositiveBasis2N), consists
of the following 2N vectors, where N is the number of independent variables for the
objective function.
[1 0 0...0][0 1 0...0] ...[0 0 0...1][–1 0 0...0][0 –1 0...0][0 0 0...–1].

For example, if the optimization problem has three independent variables, the pattern
consists of the following six vectors.
[1 0 0][0 1 0][0 0 1][–1 0 0][0 –1 0][0 0 –1].

• The GSS Positive basis 2N pattern (GSSPositiveBasis2N) is similar to GPS
Positive basis 2N, but adjusts the basis vectors to account for linear constraints.
GSS Positive basis 2N is more efficient than GPS Positive basis 2N when
the current point is near a linear constraint boundary.

• The MADS Positive basis 2N pattern (MADSPositiveBasis2N) consists of 2N
randomly generated vectors, where N is the number of independent variables for
the objective function. This is done by randomly generating N vectors which form a
linearly independent set, then using this first set and the negative of this set gives
2N vectors. As shown above, the GPS Positive basis 2N pattern is formed using
the positive and negative of the linearly independent identity, however, with the MADS
Positive basis 2N, the pattern is generated using a random permutation of an
N-by-N linearly independent lower triangular matrix that is regenerated at each
iteration.
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• The GPS Positive basis NP1 pattern consists of the following N + 1 vectors.
[1 0 0...0][0 1 0...0] ...[0 0 0...1][–1 –1 –1...–1].

For example, if the objective function has three independent variables, the pattern
consists of the following four vectors.
[1 0 0][0 1 0][0 0 1][–1 –1 –1].

• The GSS Positive basis Np1 pattern (GSSPositiveBasisNp1) is similar to GPS
Positive basis Np1, but adjusts the basis vectors to account for linear constraints.
GSS Positive basis Np1 is more efficient than GPS Positive basis Np1 when
the current point is near a linear constraint boundary.

• The MADS Positive basis Np1 pattern (MADSPositiveBasisNp1) consists of
N randomly generated vectors to form the positive basis, where N is the number of
independent variables for the objective function. Then, one more random vector is
generated, giving N+1 randomly generated vectors. Each iteration generates a new
pattern when the MADS Positive basis N+1 is selected.

Complete poll (CompletePoll) specifies whether all the points in the current mesh
must be polled at each iteration. Complete Poll can have the values On or Off.

• If you set Complete poll to On, the algorithm polls all the points in the mesh at
each iteration and chooses the point with the smallest objective function value as the
current point at the next iteration.

• If you set Complete poll to Off, the default value, the algorithm stops the poll as
soon as it finds a point whose objective function value is less than that of the current
point. The algorithm then sets that point as the current point at the next iteration.

Polling order (PollingOrder) specifies the order in which the algorithm searches the
points in the current mesh. The options are

• Random — The polling order is random.
• Success — The first search direction at each iteration is the direction in which the

algorithm found the best point at the previous iteration. After the first point, the
algorithm polls the mesh points in the same order as Consecutive.

• Consecutive — The algorithm polls the mesh points in consecutive order, that is, the
order of the pattern vectors as described in “Poll Method” on page 4-21.

Search Options

Search options specify an optional search that the algorithm can perform at each
iteration prior to the polling. If the search returns a point that improves the objective
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function, the algorithm uses that point at the next iteration and omits the polling. Please
note, if you have selected the same Search method and Poll method, only the option
selected in the Poll method will be used, although both will be used when the options
selected are different.

Complete search (CompleteSearch) applies when you set Search method to GPS
Positive basis Np1, GPS Positive basis 2N, GSS Positive basis Np1, GSS
Positive basis 2N, MADS Positive basis Np1, MADS Positive basis 2N, or
Latin hypercube. Complete search can have the values On or Off.

For GPS Positive basis Np1, MADS Positive basis Np1, GPS Positive
basis 2N, or MADS Positive basis 2N, Complete search has the same meaning as
the poll option Complete poll.

Search method (SearchMethod) specifies the optional search step. The options are

• None ([]) (the default) specifies no search step.
• GPS Positive basis 2N (@GPSPositiveBasis2N)
• GPS Positive basis Np1 (@GPSPositiveBasisNp1)
• GSS Positive basis 2N (@GSSPositiveBasis2N)
• GSS Positive basis Np1 (@GSSPositiveBasisNp1)
• MADS Positive basis 2N (@MADSPositiveBasis2N)
• MADS Positive basis Np1 (@MADSPositiveBasisNp1)
• Genetic Algorithm (@searchga) specifies a search using the genetic algorithm. If

you select Genetic Algorithm, two other options appear:

• Iteration limit — Positive integer specifying the number of iterations of the
pattern search for which the genetic algorithm search is performed. The default for
Iteration limit is 1.

• Options — Options structure for the genetic algorithm, which you can set using
gaoptimset.

To change the default values of Iteration limit and Options at the command line,
use the syntax

options = psoptimset('SearchMethod',...

       {@searchga,iterlim,optionsGA})

where iterlim is the value of Iteration limit and optionsGA is the genetic
algorithm options structure.
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Note If you set Search method to Genetic algorithm or Nelder-Mead, we
recommend that you leave Iteration limit set to the default value 1, because
performing these searches more than once is not likely to improve results.

• Latin hypercube (@searchlhs) specifies a Latin hypercube search.
patternsearch generates each point for the search as follows. For each component,
take a random permutation of the vector [1,2,...,k] minus rand(1,k), divided
by k. (k is the number of points.) This yields k points, with each component close
to evenly spaced. The resulting points are then scaled to fit any bounds. Latin
hypercube uses default bounds of -1 and 1.

The way the search is performed depends on the setting for Complete search:

• If you set Complete search to On, the algorithm polls all the points that are
randomly generated at each iteration by the Latin hypercube search and chooses
the one with the smallest objective function value.

• If you set Complete search to Off (the default), the algorithm stops the poll as
soon as it finds one of the randomly generated points whose objective function
value is less than that of the current point, and chooses that point for the next
iteration.

If you select Latin hypercube, two other options appear:

• Iteration limit — Positive integer specifying the number of iterations of the
pattern search for which the Latin hypercube search is performed. The default for
Iteration limit is 1.

• Design level — The Design level is the number of points patternsearch
searches, a positive integer. The default for Design level is 15 times the number
of dimensions.

To change the default values of Iteration limit and Design level at the command
line, use the syntax

options=psoptimset('SearchMethod', {@searchlhs,iterlim,level})

where iterlim is the value of Iteration limit and level is the value of Design
level.
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• Nelder-Mead (@searchneldermead) specifies a search using fminsearch, which
uses the Nelder-Mead algorithm. If you select Nelder-Mead, two other options
appear:

• Iteration limit — Positive integer specifying the number of iterations of the
pattern search for which the Nelder-Mead search is performed. The default for
Iteration limit is 1.

• Options — Options structure for the function fminsearch, which you can create
using the function optimset.

To change the default values of Iteration limit and Options at the command line,
use the syntax

options=psoptimset('SearchMethod',...

     {@searchneldermead,iterlim,optionsNM})

where iterlim is the value of Iteration limit and optionsNM is the options
structure.

• Custom enables you to write your own search function. To specify the search function
using the Optimization app,

• Set Search function to Custom.
• Set Function name to @myfun, where myfun is the name of your function.

If you are using patternsearch, set

options = psoptimset('SearchMethod', @myfun);

To see a template that you can use to write your own search function, enter

edit searchfcntemplate

The following section describes the structure of the search function.

Structure of the Search Function

Your search function must have the following calling syntax.

function [successSearch,xBest,fBest,funccount] = 

searchfcntemplate(fun,x,A,b,Aeq,beq,lb,ub, ...

    optimValues,options)

The search function has the following input arguments:
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• fun — Objective function
• x — Current point
• A,b — Linear inequality constraints
• Aeq,beq — Linear equality constraints
• lb,ub — Lower and upper bound constraints
• optimValues — Structure that enables you to set search options. The structure

contains the following fields:

• x — Current point
• fval — Objective function value at x
• iteration — Current iteration number
• funccount — Counter for user function evaluation
• scale — Scale factor used to scale the design points
• problemtype — Flag passed to the search routines, indicating

whether the problem is 'unconstrained', 'boundconstraints', or
'linearconstraints'. This field is a subproblem type for nonlinear constrained
problems.

• meshsize — Current mesh size used in search step
• method — Method used in last iteration

• options — Pattern search options structure

The function has the following output arguments:

• successSearch — A Boolean identifier indicating whether the search is successful
or not

• xBest,fBest — Best point and best function value found by search method
• funccount — Number of user function evaluation in search method

See “Using a Search Method” on page 4-32 for an example.

Mesh Options

Mesh options control the mesh that the pattern search uses. The following options are
available.
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Initial size (InitialMeshSize) specifies the size of the initial mesh, which is the
length of the shortest vector from the initial point to a mesh point. Initial size should be
a positive scalar. The default is 1.0.

Max size (MaxMeshSize) specifies a maximum size for the mesh. When the maximum
size is reached, the mesh size does not increase after a successful iteration. Max size
must be a positive scalar, and is only used when a GPS or GSS algorithm is selected as
the Poll or Search method. The default value is Inf. MADS uses a maximum size of 1.

Accelerator (MeshAccelerator) specifies whether, when the mesh size is small, the
Contraction factor is multiplied by 0.5 after each unsuccessful iteration. Accelerator
can have the values On or Off, the default. Accelerator applies to the GPS and GSS
algorithms.

Rotate (MeshRotate) is only applied when Poll method is set to GPS Positive
basis Np1 or GSS Positive basis Np1. It specifies whether the mesh vectors
are multiplied by –1 when the mesh size is less than 1/100 of the mesh tolerance
(minimum mesh size TolMesh) after an unsuccessful poll. In other words, after the first
unsuccessful poll with small mesh size, instead of polling in directions ei (unit positive
directions) and –Σei, the algorithm polls in directions –ei and Σei. Rotate can have the
values Off or On (the default). When the problem has equality constraints, Rotate is
disabled.

Rotate is especially useful for discontinuous functions.

Note Changing the setting of Rotate has no effect on the poll when Poll method is set
to GPS Positive basis 2N, GSS Positive basis 2N, MADS Positive basis 2N,
or MADS Positive basis Np1.

Scale (ScaleMesh) specifies whether the algorithm scales the mesh points by carefully
multiplying the pattern vectors by constants proportional to the logarithms of the
absolute values of components of the current point (or, for unconstrained problems, of the
initial point). Scale can have the values Off or On (the default). When the problem has
equality constraints, Scale is disabled.

Expansion factor (MeshExpansion) specifies the factor by which the mesh size is
increased after a successful poll. The default value is 2.0, which means that the size
of the mesh is multiplied by 2.0 after a successful poll. Expansion factor must be a
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positive scalar and is only used when a GPS or GSS method is selected as the Poll or
Search method. MADS uses a factor of 4.0.

Contraction factor (MeshContraction) specifies the factor by which the mesh size is
decreased after an unsuccessful poll. The default value is 0.5, which means that the size
of the mesh is multiplied by 0.5 after an unsuccessful poll. Contraction factor must
be a positive scalar and is only used when a GPS or GSS method is selected as the Poll or
Search method. MADS uses a factor of 0.25.

See “Mesh Expansion and Contraction” on page 4-58 for more information.

Constraint Parameters

For information on the meaning of penalty parameters, see “Nonlinear Constraint Solver
Algorithm” on page 4-37.

• Initial penalty (InitialPenalty) — Specifies an initial value of the penalty
parameter that is used by the nonlinear constraint algorithm. Initial penalty must
be greater than or equal to 1, and has a default of 10.

• Penalty factor (PenaltyFactor) — Increases the penalty parameter when the
problem is not solved to required accuracy and constraints are not satisfied. Penalty
factor must be greater than 1, and has a default of 100.

Bind tolerance (TolBind) specifies the tolerance for the distance from the current
point to the boundary of the feasible region with respect to linear constraints. This
means Bind tolerance specifies when a linear constraint is active. Bind tolerance
is not a stopping criterion. Active linear constraints change the pattern of points
patternsearch uses for polling or searching. patternsearch always uses points
that satisfy linear constraints to within Bind tolerance. The default value of Bind
tolerance is 1e-3.

Cache Options

The pattern search algorithm can keep a record of the points it has already polled, so
that it does not have to poll the same point more than once. If the objective function
requires a relatively long time to compute, the cache option can speed up the algorithm.
The memory allocated for recording the points is called the cache. This option should only
be used for deterministic objective functions, but not for stochastic ones.



10 Options Reference

10-20

Cache (Cache) specifies whether a cache is used. The options are On and Off, the
default. When you set Cache to On, the algorithm does not evaluate the objective
function at any mesh points that are within Tolerance of a point in the cache.

Tolerance (CacheTol) specifies how close a mesh point must be to a point in the cache
for the algorithm to omit polling it. Tolerance must be a positive scalar. The default
value is eps.

Size (CacheSize) specifies the size of the cache. Size must be a positive scalar. The
default value is 1e4.

See “Use Cache” on page 4-75 for more information.

Stopping Criteria

Stopping criteria determine what causes the pattern search algorithm to stop. Pattern
search uses the following criteria:

Mesh tolerance (TolMesh) specifies the minimum tolerance for mesh size. The GPS
and GSS algorithms stop if the mesh size becomes smaller than Mesh tolerance. MADS
2N stops when the mesh size becomes smaller than TolMesh^2. MADS Np1 stops when
the mesh size becomes smaller than (TolMesh/nVar)^2, where nVar is the number of
elements of x0. The default value of TolMesh is 1e-6.

Max iteration (MaxIter) specifies the maximum number of iterations the algorithm
performs. The algorithm stops if the number of iterations reaches Max iteration. You
can select either

• 100*numberOfVariables — Maximum number of iterations is 100 times the
number of independent variables (the default).

• Specify — A positive integer for the maximum number of iterations

Max function evaluations (MaxFunEval) specifies the maximum number of
evaluations of the objective function. The algorithm stops if the number of function
evaluations reaches Max function evaluations. You can select either

• 2000*numberOfVariables — Maximum number of function evaluations is 2000
times the number of independent variables.

• Specify — A positive integer for the maximum number of function evaluations
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Time limit (TimeLimit) specifies the maximum time in seconds the pattern search
algorithm runs before stopping. This also includes any specified pause time for pattern
search algorithms.

X tolerance (TolX) specifies the minimum distance between the current points at two
consecutive iterations. Does not apply to MADS polling. After an unsuccessful poll, the
algorithm stops if the distance between two consecutive points is less than X tolerance
and the mesh size is smaller than X tolerance. The default value is 1e-6.

Function tolerance (TolFun) specifies the minimum tolerance for the objective
function. Does not apply to MADS polling. After an unsuccessful poll, the algorithm stops
if the difference between the function value at the previous best point and function value
at the current best point is less than Function tolerance, and if the mesh size is also
smaller than X tolerance. The default value is 1e-6.

See “Setting Solver Tolerances” on page 4-31 for an example.

Constraint tolerance (TolCon) — The Constraint tolerance is not used as stopping
criterion. It is used to determine the feasibility with respect to nonlinear constraints.

Output Function Options

Output functions are functions that the pattern search algorithm calls at each
generation. To specify the output function using the Optimization app,

• Select Custom function.
• Enter @myfun in the text box, where myfun is the name of your function.
• To pass extra parameters in the output function, use “Anonymous Functions”.
• For multiple output functions, enter a cell array of output function handles:

{@myfun1,@myfun2,...}.

At the command line, set

options = psoptimset('OutputFcns',@myfun);

For multiple output functions, enter a cell array:

options = psoptimset('OutputFcns',{@myfun1,@myfun2,...});

To see a template that you can use to write your own output function, enter

edit psoutputfcntemplate



10 Options Reference

10-22

at the MATLAB command prompt.

The following section describes the structure of the output function.

Structure of the Output Function

Your output function must have the following calling syntax:

[stop,options,optchanged] = myfun(optimvalues,options,flag)

The function has the following input arguments:

• optimvalues — Structure containing information about the current state of the
solver. The structure contains the following fields:

• x — Current point
• iteration — Iteration number
• fval — Objective function value
• meshsize — Current mesh size
• funccount — Number of function evaluations
• method — Method used in last iteration
• TolFun — Tolerance on function value in last iteration
• TolX — Tolerance on x value in last iteration
• nonlinineq — Nonlinear inequality constraints, displayed only when a nonlinear

constraint function is specified
• nonlineq — Nonlinear equality constraints, displayed only when a nonlinear

constraint function is specified
• options — Options structure
• flag — Current state in which the output function is called. The possible values for

flag are

• init — Initialization state
• iter — Iteration state
• interrupt — Intermediate stage
• done — Final state

“Passing Extra Parameters” in the Optimization Toolbox documentation explains how to
provide additional parameters to the output function.
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The output function returns the following arguments to ga:

• stop — Provides a way to stop the algorithm at the current iteration. stop can have
the following values.

• false — The algorithm continues to the next iteration.
• true — The algorithm terminates at the current iteration.

• options — Options structure.
• optchanged — Flag indicating changes to options.

Display to Command Window Options

Level of display ('Display') specifies how much information is displayed at the
command line while the pattern search is running. The available options are

• Off ('off') — No output is displayed.
• Iterative ('iter') — Information is displayed for each iteration.
• Diagnose ('diagnose') — Information is displayed for each iteration. In addition,

the diagnostic lists some problem information and the options that are changed from
the defaults.

• Final ('final') — The reason for stopping is displayed.

Both Iterative and Diagnose display the following information:

• Iter — Iteration number
• FunEval — Cumulative number of function evaluations
• MeshSize — Current mesh size
• FunVal — Objective function value of the current point
• Method — Outcome of the current poll (with no nonlinear constraint function

specified). With a nonlinear constraint function, Method displays the update method
used after a subproblem is solved.

• Max Constraint — Maximum nonlinear constraint violation (displayed only when a
nonlinear constraint function has been specified)

The default value of Level of display is

• Off in the Optimization app
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• 'final' in an options structure created using psoptimset

Vectorize and Parallel Options (User Function Evaluation)

You can choose to have your objective and constraint functions evaluated in serial,
parallel, or in a vectorized fashion. These options are available in the User function
evaluation section of the Options pane of the Optimization app, or by setting the
'Vectorized' and 'UseParallel' options with psoptimset.

Note: You must set CompletePoll to 'on' for patternsearch to use vectorized
or parallel polling. Similarly, set CompleteSearch to 'on' for vectorized or parallel
searching.

• When Evaluate objective and constraint functions ('Vectorized') is in serial
('Off'), patternsearch calls the objective function on one point at a time as it loops
through the mesh points. (At the command line, this assumes 'UseParallel' is at
its default value of false.)

• When Evaluate objective and constraint functions ('Vectorized') is
vectorized ('On'), patternsearch calls the objective function on all the points in
the mesh at once, i.e., in a single call to the objective function.

If there are nonlinear constraints, the objective function and the nonlinear constraints
all need to be vectorized in order for the algorithm to compute in a vectorized manner.

For details and an example, see “Vectorize the Objective and Constraint Functions” on
page 4-80.

• When Evaluate objective and constraint functions (UseParallel) is in
parallel (true), patternsearch calls the objective function in parallel, using the
parallel environment you established (see “How to Use Parallel Processing” on page
9-12). At the command line, set UseParallel to false to compute serially.

Note: You cannot simultaneously use vectorized and parallel computations. If you set
'UseParallel' to true and 'Vectorized' to 'On', patternsearch evaluates your
objective and constraint functions in a vectorized manner, not in parallel.

How Objective and Constraint Functions Are Evaluated
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Assume CompletePoll =
'on'

Vectorized = 'off' Vectorized = 'on'

UseParallel = false Serial Vectorized
UseParallel = true Parallel Vectorized

Options Table for Pattern Search Algorithms

Option Availability Table for All Algorithms

Option Description Algorithm Availability

Cache With Cache set to 'on',
patternsearch keeps a history
of the mesh points it polls
and does not poll points close
to them again at subsequent
iterations. Use this option if
patternsearch runs slowly
because it is taking a long
time to compute the objective
function. If the objective function
is stochastic, it is advised not to
use this option.

All

CacheSize Size of the cache, in number of
points.

All

CacheTol Positive scalar specifying how
close the current mesh point
must be to a point in the cache
in order for patternsearch
to avoid polling it. Available if
'Cache' option is set to 'on'.

All

CompletePoll Complete poll around current
iterate. Evaluate all the points
in a poll step.

All

CompleteSearch Complete search around current
iterate when the search method
is a poll method. Evaluate all
the points in a search step.

All
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Option Description Algorithm Availability

Display Level of display to Command
Window.

All

InitialMeshSize Initial mesh size used in pattern
search algorithms.

All

InitialPenalty Initial value of the penalty
parameter.

All

MaxFunEvals Maximum number of objective
function evaluations.

All

MaxIter Maximum number of iterations. All
MaxMeshSize Maximum mesh size used in a

poll/search step.
GPS and GSS

MeshAccelerator Accelerate mesh size
contraction.

GPS and GSS

MeshContraction Mesh contraction factor, used
when iteration is unsuccessful.

GPS and GSS

MeshExpansion Mesh expansion factor,
expands mesh when iteration is
successful.

GPS and GSS

MeshRotate Rotate the pattern before
declaring a point to be optimum.

GPS Np1 and GSS Np1

OutputFcns User-specified function that
a pattern search calls at each
iteration.

All

PenaltyFactor Penalty update parameter. All
PlotFcns Specifies function to plot at

runtime.
All

PlotInterval Specifies that plot functions will
be called at every interval.

All

PollingOrder Order in which search directions
are polled.

GPS and GSS

PollMethod Polling strategy used in pattern
search.

All
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Option Description Algorithm Availability

ScaleMesh Automatic scaling of variables. All
SearchMethod Specifies search method used in

pattern search.
All

TimeLimit Total time (in seconds) allowed
for optimization. Also includes
any specified pause time for
pattern search algorithms.

All

TolBind Binding tolerance used to
determine if linear constraint is
active.

All

TolCon Tolerance on nonlinear
constraints.

All

TolFun Tolerance on function value. All
TolMesh Tolerance on mesh size. All
TolX Tolerance on independent

variable.
All

UseParallel When true, compute objective
functions of a poll or search in
parallel. Disable by setting to
false.

All

Vectorized Specifies whether objective
and constraint functions are
vectorized.

All
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Genetic Algorithm Options

In this section...

“Optimization App vs. Command Line” on page 10-28
“Plot Options” on page 10-29
“Population Options” on page 10-32
“Fitness Scaling Options” on page 10-35
“Selection Options” on page 10-37
“Reproduction Options” on page 10-39
“Mutation Options” on page 10-40
“Crossover Options” on page 10-42
“Migration Options” on page 10-46
“Constraint Parameters” on page 10-47
“Multiobjective Options” on page 10-48
“Hybrid Function Options” on page 10-49
“Stopping Criteria Options” on page 10-49
“Output Function Options” on page 10-50
“Display to Command Window Options” on page 10-52
“Vectorize and Parallel Options (User Function Evaluation)” on page 10-53

Optimization App vs. Command Line

There are two ways to specify options for the genetic algorithm, depending on whether
you are using the Optimization app or calling the functions ga or gamultiobj at the
command line:

• If you are using the Optimization app (optimtool), select an option from a drop-
down list or enter the value of the option in a text field.

• If you are calling ga or gamultiobj at the command line, create an options
structure using the function gaoptimset, as follows:

options = gaoptimset('Param1', value1, 'Param2', value2, ...);

See “Setting Options at the Command Line” on page 5-64 for examples.
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In this section, each option is listed in two ways:

• By its label, as it appears in the Optimization app
• By its field name in the options structure

For example:

• Population type is the label of the option in the Optimization app.
• PopulationType is the corresponding field of the options structure.

Plot Options

Plot options let you plot data from the genetic algorithm while it is running. You can stop
the algorithm at any time by clicking the Stop button on the plot window.

Plot interval (PlotInterval) specifies the number of generations between consecutive
calls to the plot function.

You can select any of the following plot functions in the Plot functions pane:

• Best fitness (@gaplotbestf) plots the best function value versus generation.
• Expectation (@gaplotexpectation) plots the expected number of children versus

the raw scores at each generation.
• Score diversity (@gaplotscorediversity) plots a histogram of the scores at each

generation.
• Stopping (@gaplotstopping) plots stopping criteria levels.
• Best individual (@gaplotbestindiv) plots the vector entries of the individual with

the best fitness function value in each generation.
• Genealogy (@gaplotgenealogy) plots the genealogy of individuals. Lines from one

generation to the next are color-coded as follows:

• Red lines indicate mutation children.
• Blue lines indicate crossover children.
• Black lines indicate elite individuals.

• Scores (@gaplotscores) plots the scores of the individuals at each generation.
• Max constraint (@gaplotmaxconstr) plots the maximum nonlinear constraint

violation at each generation.
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• Distance (@gaplotdistance) plots the average distance between individuals at
each generation.

• Range (@gaplotrange) plots the minimum, maximum, and mean fitness function
values in each generation.

• Selection (@gaplotselection) plots a histogram of the parents.
• Custom function lets you use plot functions of your own. To specify the plot function

if you are using the Optimization app,

• Select Custom function.
• Enter @myfun in the text box, where myfun is the name of your function.

See “Structure of the Plot Functions” on page 10-31.

gamultiobj allows Distance, Genealogy, Score diversity, Selection, Stopping, and
Custom function, as well as the following additional choices:

• Pareto front (@gaplotpareto) plots the Pareto front for the first two objective
functions.

• Average Pareto distance (@gaplotparetodistance) plots a bar chart of the
distance of each individual from its neighbors.

• Rank histogram (@gaplotrankhist) plots a histogram of the ranks of the
individuals. Individuals of rank 1 are on the Pareto frontier. Individuals of rank 2 are
lower than at least one rank 1 individual, but are not lower than any individuals from
other ranks, etc.

• Average Pareto spread (@gaplotspread) plots the average spread as a function of
iteration number.

To display a plot when calling ga from the command line, set the PlotFcns field of
options to be a function handle to the plot function. For example, to display the best
fitness plot, set options as follows:

options = gaoptimset('PlotFcns', @gaplotbestf);

To display multiple plots, use the syntax

options = gaoptimset('PlotFcns', {@plotfun1, @plotfun2, ...});

where @plotfun1, @plotfun2, and so on are function handles to the plot functions.

If you specify multiple plot functions, all plots appear as subplots in the same window.
Right-click any subplot to obtain a larger version in a separate figure window.



 Genetic Algorithm Options

10-31

Structure of the Plot Functions

The first line of a plot function has this form:

function state = plotfun(options,state,flag)

The input arguments to the function are

• options — Structure containing all the current options settings.
• state — Structure containing information about the current generation. “The State

Structure” on page 10-31 describes the fields of state.
• flag — String that tells what stage the algorithm is currently in.

“Passing Extra Parameters” in the Optimization Toolbox documentation explains how to
provide additional parameters to the function.

The output argument state is a state structure as well. Pass the input argument,
modified if you like. To stop the iterations, set state.StopFlag to a nonempty string.

The State Structure

ga

The state structure for ga, which is an input argument to plot, mutation, and output
functions, contains the following fields:

• Population — Population in the current generation
• Score — Scores of the current population
• Generation — Current generation number
• StartTime — Time when genetic algorithm started
• StopFlag — String containing the reason for stopping
• Selection — Indices of individuals selected for elite, crossover, and mutation
• Expectation — Expectation for selection of individuals
• Best — Vector containing the best score in each generation
• LastImprovement — Generation at which the last improvement in fitness value

occurred
• LastImprovementTime — Time at which last improvement occurred
• NonlinIneq — Nonlinear inequality constraints, displayed only when a nonlinear

constraint function is specified
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• NonlinEq — Nonlinear equality constraints, displayed only when a nonlinear
constraint function is specified

gamultiobj

The state structure for gamultiobj, which is an input argument to plot, mutation, and
output functions, contains the following fields:

• Population — Population in the current generation
• Score — Scores of the current population, a Population-by-nObjectives matrix,

where nObjectives is the number of objectives
• Generation — Current generation number
• StartTime — Time when genetic algorithm started
• StopFlag — String containing the reason for stopping
• Selection — Indices of individuals selected for elite, crossover, and mutation
• Rank — Vector of the ranks of members in the population
• Distance — Vector of distances of each member of the population to the nearest

neighboring member
• AverageDistance — The average of Distance
• Spread — Vector where the entries are the spread in each generation

Population Options

Population options let you specify the parameters of the population that the genetic
algorithm uses.

Population type (PopulationType) specifies the type of input to the fitness function.
Types and their restrictions are:

• Double vector ('doubleVector') — Use this option if the individuals in the
population have type double. Use this option for mixed integer programming. This is
the default.

• Bit string ('bitstring') — Use this option if the individuals in the population
have components that are 0 or 1.

Caution The individuals in a Bit string population are vectors of type double, not
strings.
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For Creation function (CreationFcn) and Mutation function (MutationFcn),
use Uniform (@gacreationuniform and @mutationuniform) or Custom. For
Crossover function (CrossoverFcn), use Scattered (@crossoverscattered),
Single point (@crossoversinglepoint), Two point (@crossovertwopoint),
or Custom. You cannot use a Hybrid function, and ga ignores all constraints,
including bounds, linear constraints, and nonlinear constraints.

• Custom — For Crossover function and Mutation function, use Custom. For
Creation function, either use Custom, or provide an Initial population. You
cannot use a Hybrid function, and ga ignores all constraints, including bounds,
linear constraints, and nonlinear constraints.

Population size (PopulationSize) specifies how many individuals there are in each
generation. With a large population size, the genetic algorithm searches the solution
space more thoroughly, thereby reducing the chance that the algorithm returns a local
minimum that is not a global minimum. However, a large population size also causes the
algorithm to run more slowly.

If you set Population size to a vector, the genetic algorithm creates multiple
subpopulations, the number of which is the length of the vector. The size of each
subpopulation is the corresponding entry of the vector. See “Migration Options” on page
10-46.

Creation function (CreationFcn) specifies the function that creates the initial
population for ga. Do not specify a creation function with integer problems because ga
overrides any choice you make. Choose from:

• [] uses the default creation function for your problem.
• Uniform (@gacreationuniform) creates a random initial population with a uniform

distribution. This is the default when there are no linear constraints, or when there
are integer constraints. The uniform distribution is in the initial population range
(PopInitRange). The default values for PopInitRange are [-10;10] for every
component, or [-9999;10001] when there are integer constraints. These bounds are
shifted and scaled to match any existing bounds lb and ub.

Caution Do not use @gacreationuniform when you have linear constraints.
Otherwise, your population might not satisfy the linear constraints.

• Feasible population (@gacreationlinearfeasible), the default when there
are linear constraints and no integer constraints, creates a random initial population
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that satisfies all bounds and linear constraints. If there are linear constraints,
Feasible population creates many individuals on the boundaries of the constraint
region, and creates a well-dispersed population. Feasible population ignores
Initial range (PopInitRange).

gacreationlinearfeasible calls linprog to create a feasible population with
respect to bounds and linear constraints.

For an example showing its behavior, see “Linearly Constrained Population and
Custom Plot Function” on page 5-77.

• Nonlinear Feasible population (@gacreationnonlinearfeasible) is the
default creation function for the 'penalty' nonlinear constraint algorithm. For
details, see “Constraint Parameters” on page 10-47.

• Custom lets you write your own creation function, which must generate data of the
type that you specify in Population type. To specify the creation function if you are
using the Optimization app,

• Set Creation function to Custom.
• Set Function name to @myfun, where myfun is the name of your function.

If you are using ga, set

options = gaoptimset('CreationFcn', @myfun);

Your creation function must have the following calling syntax.

function Population = myfun(GenomeLength, FitnessFcn, options)

The input arguments to the function are:

• Genomelength — Number of independent variables for the fitness function
• FitnessFcn — Fitness function
• options — Options structure

The function returns Population, the initial population for the genetic algorithm.

“Passing Extra Parameters” in the Optimization Toolbox documentation explains how
to provide additional parameters to the function.
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Caution When you have bounds or linear constraints, ensure that your creation
function creates individuals that satisfy these constraints. Otherwise, your population
might not satisfy the constraints.

Initial population (InitialPopulation) specifies an initial population for the genetic
algorithm. The default value is [], in which case ga uses the default Creation function
to create an initial population. If you enter a nonempty array in the Initial population
field, the array must have no more than Population size rows, and exactly Number
of variables columns. In this case, the genetic algorithm calls a Creation function to
generate the remaining individuals, if required.

Initial scores (InitialScores) specifies initial scores for the initial population. The
initial scores can also be partial. Do not specify initial scores with integer problems
because ga overrides any choice you make.

Initial range (PopInitRange) specifies the range of the vectors in the initial population
that is generated by the gacreationuniform creation function. You can set Initial
range to be a matrix with two rows and Number of variables columns, each column
of which has the form [lb;ub], where lb is the lower bound and ub is the upper bound
for the entries in that coordinate. If you specify Initial range to be a 2-by-1 vector,
each entry is expanded to a constant row of length Number of variables. If you do
not specify an Initial range, the default is [-10;10] ([-1e4+1;1e4+1] for integer-
constrained problems), modified to match any existing bounds.

See “Setting the Initial Range” on page 5-73 for an example.

Fitness Scaling Options

Fitness scaling converts the raw fitness scores that are returned by the fitness function
to values in a range that is suitable for the selection function. You can specify options for
fitness scaling in the Fitness scaling pane.

Scaling function (FitnessScalingFcn) specifies the function that performs the
scaling. The options are

• Rank (@fitscalingrank) — The default fitness scaling function, Rank, scales
the raw scores based on the rank of each individual instead of its score. The rank
of an individual is its position in the sorted scores. An individual with rank r has
scaled score proportional to 1 / r . So the scaled score of the most fit individual is
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proportional to 1, the scaled score of the next most fit is proportional to 1 2/ , and so
on. Rank fitness scaling removes the effect of the spread of the raw scores. The square
root makes poorly ranked individuals more nearly equal in score, compared to rank
scoring. For more information, see “Fitness Scaling” on page 5-84.

• Proportional (@fitscalingprop) — Proportional scaling makes the scaled value
of an individual proportional to its raw fitness score.

• Top (@fitscalingtop) — Top scaling scales the top individuals equally. Selecting
Top displays an additional field, Quantity, which specifies the number of individuals
that are assigned positive scaled values. Quantity can be an integer from 1 through
the population size or a fraction from 0 through 1 specifying a fraction of the
population size. The default value is 0.4. Each of the individuals that produce
offspring is assigned an equal scaled value, while the rest are assigned the value 0.
The scaled values have the form [01/n 1/n 0 0 1/n 0 0 1/n ...].

To change the default value for Quantity at the command line, use the following
syntax:

options = gaoptimset('FitnessScalingFcn', {@fitscalingtop,quantity})

where quantity is the value of Quantity.
• Shift linear (@fitscalingshiftlinear) — Shift linear scaling scales the raw

scores so that the expectation of the fittest individual is equal to a constant multiplied
by the average score. You specify the constant in the Max survival rate field, which
is displayed when you select Shift linear. The default value is 2.

To change the default value of Max survival rate at the command line, use the
following syntax

options = gaoptimset('FitnessScalingFcn', 

{@fitscalingshiftlinear, rate})

where rate is the value of Max survival rate.
• Custom lets you write your own scaling function. To specify the scaling function using

the Optimization app,

• Set Scaling function to Custom.
• Set Function name to @myfun, where myfun is the name of your function.

If you are using ga at the command line, set
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options = gaoptimset('FitnessScalingFcn', @myfun);

Your scaling function must have the following calling syntax:

function expectation = myfun(scores, nParents)

The input arguments to the function are:

• scores — A vector of scalars, one for each member of the population
• nParents — The number of parents needed from this population

The function returns expectation, a column vector of scalars of the same length as
scores, giving the scaled values of each member of the population. The sum of the
entries of expectation must equal nParents.

“Passing Extra Parameters” in the Optimization Toolbox documentation explains how
to provide additional parameters to the function.

See “Fitness Scaling” on page 5-84 for more information.

Selection Options

Selection options specify how the genetic algorithm chooses parents for the next
generation. You can specify the function the algorithm uses in the Selection function
(SelectionFcn) field in the Selection options pane. Do not use with integer problems.
The options are

• Stochastic uniform (@selectionstochunif) — The ga default selection
function, Stochastic uniform, lays out a line in which each parent corresponds to
a section of the line of length proportional to its scaled value. The algorithm moves
along the line in steps of equal size. At each step, the algorithm allocates a parent
from the section it lands on. The first step is a uniform random number less than the
step size.

• Remainder (@selectionremainder) — Remainder selection assigns parents
deterministically from the integer part of each individual's scaled value and then uses
roulette selection on the remaining fractional part. For example, if the scaled value
of an individual is 2.3, that individual is listed twice as a parent because the integer
part is 2. After parents have been assigned according to the integer parts of the scaled
values, the rest of the parents are chosen stochastically. The probability that a parent
is chosen in this step is proportional to the fractional part of its scaled value.
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• Uniform (@selectionuniform) — Uniform selection chooses parents using the
expectations and number of parents. Uniform selection is useful for debugging and
testing, but is not a very effective search strategy.

• Roulette (@selectionroulette) — Roulette selection chooses parents
by simulating a roulette wheel, in which the area of the section of the wheel
corresponding to an individual is proportional to the individual's expectation. The
algorithm uses a random number to select one of the sections with a probability equal
to its area.

• Tournament (@selectiontournament) — The gamultiobj selection function,
tournament selection chooses each parent by choosing Tournament size players
at random and then choosing the best individual out of that set to be a parent.
Tournament size must be at least 2. The default value of Tournament size is 4.

To change the default value of Tournament size at the command line, use the
syntax

options = gaoptimset('SelectionFcn',...

                     {@selectiontournament,size})

where size is the value of Tournament size.

When Constraint parameters > Nonlinear constraint algorithm is Penalty, ga
uses Tournament with size 2.

• Custom enables you to write your own selection function. To specify the selection
function using the Optimization app,

• Set Selection function to Custom.
• Set Function name to @myfun, where myfun is the name of your function.

If you are using ga at the command line, set

options = gaoptimset('SelectionFcn', @myfun);

Your selection function must have the following calling syntax:

function parents = myfun(expectation, nParents, options)

ga provides the input arguments expectation, nParents, and options. Your
function returns the indices of the parents.

The input arguments to the function are:
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• expectation

• For ga, expectation is a column vector of the scaled fitness of each member
of the population. The scaling comes from the “Fitness Scaling Options” on page
10-35.

Tip You can ensure that you have a column vector by using
expectation(:,1). For example, edit selectionstochunif or any of the
other built-in selection functions.

• For gamultiobj, expectation is a matrix whose first column is the rank
of the individuals, and whose second column is the distance measure of the
individuals. See “Multiobjective Options” on page 10-48.

• nParents— Number of parents to select.
• options — Genetic algorithm options structure.

The function returns parents, a row vector of length nParents containing the
indices of the parents that you select.

“Passing Extra Parameters” in the Optimization Toolbox documentation explains how
to provide additional parameters to the function.

See “Selection” on page 5-25 for more information.

Reproduction Options

Reproduction options specify how the genetic algorithm creates children for the next
generation.

Elite count (EliteCount) specifies the number of individuals that are guaranteed
to survive to the next generation. Set Elite count to be a positive integer less than
or equal to the population size. The default value is ceil(0.05*PopulationSize)
for continuous problems, and 0.05*(default PopulationSize) for mixed-integer
problems.

Crossover fraction (CrossoverFraction) specifies the fraction of the next generation,
other than elite children, that are produced by crossover. Set Crossover fraction to be
a fraction between 0 and 1, either by entering the fraction in the text box or moving the
slider. The default value is 0.8.
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See “Setting the Crossover Fraction” on page 5-90 for an example.

Mutation Options

Mutation options specify how the genetic algorithm makes small random changes in the
individuals in the population to create mutation children. Mutation provides genetic
diversity and enables the genetic algorithm to search a broader space. You can specify
the mutation function in the Mutation function (MutationFcn) field in the Mutation
options pane. Do not use with integer problems. You can choose from the following
functions:

• Gaussian (mutationgaussian) — The default mutation function for unconstrained
problems, Gaussian, adds a random number taken from a Gaussian distribution with
mean 0 to each entry of the parent vector. The standard deviation of this distribution
is determined by the parameters Scale and Shrink, which are displayed when you
select Gaussian, and by the Initial range setting in the Population options.

• The Scale parameter determines the standard deviation at the first generation. If
you set Initial range to be a 2-by-1 vector v, the initial standard deviation is the
same at all coordinates of the parent vector, and is given by Scale*(v(2)-v(1)).

If you set Initial range to be a vector v with two rows and Number of variables
columns, the initial standard deviation at coordinate i of the parent vector is given
by Scale*(v(i,2) - v(i,1)).

• The Shrink parameter controls how the standard deviation shrinks as
generations go by. If you set Initial range to be a 2-by-1 vector, the standard
deviation at the kth generation, σk, is the same at all coordinates of the parent
vector, and is given by the recursive formula
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If you set Initial range to be a vector with two rows and Number of variables
columns, the standard deviation at coordinate i of the parent vector at the kth
generation, σi,k, is given by the recursive formula
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If you set Shrink to 1, the algorithm shrinks the standard deviation in each
coordinate linearly until it reaches 0 at the last generation is reached. A negative
value of Shrink causes the standard deviation to grow.

The default value of both Scale and Shrink is 1. To change the default values at the
command line, use the syntax

options = gaoptimset('MutationFcn', ... 

{@mutationgaussian, scale, shrink})

where scale and shrink are the values of Scale and Shrink, respectively.

Caution Do not use mutationgaussian when you have bounds or linear constraints.
Otherwise, your population will not necessarily satisfy the constraints.

• Uniform (mutationuniform) — Uniform mutation is a two-step process. First, the
algorithm selects a fraction of the vector entries of an individual for mutation, where
each entry has a probability Rate of being mutated. The default value of Rate is
0.01. In the second step, the algorithm replaces each selected entry by a random
number selected uniformly from the range for that entry.

To change the default value of Rate at the command line, use the syntax

options = gaoptimset('MutationFcn', {@mutationuniform, rate})

where rate is the value of Rate.

Caution Do not use mutationuniform when you have bounds or linear constraints.
Otherwise, your population will not necessarily satisfy the constraints.

• Adaptive Feasible (mutationadaptfeasible), the default mutation function
when there are constraints, randomly generates directions that are adaptive with
respect to the last successful or unsuccessful generation. The mutation chooses a
direction and step length that satisfies bounds and linear constraints.

• Custom enables you to write your own mutation function. To specify the mutation
function using the Optimization app,

• Set Mutation function to Custom.
• Set Function name to @myfun, where myfun is the name of your function.
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If you are using ga, set

options = gaoptimset('MutationFcn', @myfun);

Your mutation function must have this calling syntax:

function mutationChildren = myfun(parents, options, nvars, 

FitnessFcn, state, thisScore, thisPopulation)

The arguments to the function are

• parents — Row vector of parents chosen by the selection function
• options — Options structure
• nvars — Number of variables
• FitnessFcn — Fitness function
• state — Structure containing information about the current generation. “The

State Structure” on page 10-31 describes the fields of state.
• thisScore — Vector of scores of the current population
• thisPopulation — Matrix of individuals in the current population

The function returns mutationChildren—the mutated offspring—as a matrix
where rows correspond to the children. The number of columns of the matrix is
Number of variables.

“Passing Extra Parameters” in the Optimization Toolbox documentation explains how
to provide additional parameters to the function.

Caution When you have bounds or linear constraints, ensure that your mutation
function creates individuals that satisfy these constraints. Otherwise, your population
will not necessarily satisfy the constraints.

Crossover Options

Crossover options specify how the genetic algorithm combines two individuals, or
parents, to form a crossover child for the next generation.

Crossover function (CrossoverFcn) specifies the function that performs the crossover.
Do not use with integer problems. You can choose from the following functions:
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• Scattered (@crossoverscattered), the default crossover function for problems
without linear constraints, creates a random binary vector and selects the genes
where the vector is a 1 from the first parent, and the genes where the vector is a 0
from the second parent, and combines the genes to form the child. For example, if p1
and p2 are the parents

p1 = [a b c d e f g h]

p2 = [1 2 3 4 5 6 7 8]

and the binary vector is [1 1 0 0 1 0 0 0], the function returns the following child:

child1 = [a b 3 4 e 6 7 8]

Caution Do not use @crossoverscattered when you have linear constraints.
Otherwise, your population will not necessarily satisfy the constraints.

• Single point (@crossoversinglepoint) chooses a random integer n between 1
and Number of variables and then

• Selects vector entries numbered less than or equal to n from the first parent.
• Selects vector entries numbered greater than n from the second parent.
• Concatenates these entries to form a child vector.

For example, if p1 and p2 are the parents

p1 = [a b c d e f g h]

p2 = [1 2 3 4 5 6 7 8]

and the crossover point is 3, the function returns the following child.

child = [a b c 4 5 6 7 8]

Caution Do not use @crossoversinglepoint when you have linear constraints.
Otherwise, your population will not necessarily satisfy the constraints.

• Two point (@crossovertwopoint) selects two random integers m and n between 1
and Number of variables. The function selects

• Vector entries numbered less than or equal to m from the first parent
• Vector entries numbered from m+1 to n, inclusive, from the second parent
• Vector entries numbered greater than n from the first parent.
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The algorithm then concatenates these genes to form a single gene. For example, if p1
and p2 are the parents

p1 = [a b c d e f g h]

p2 = [1 2 3 4 5 6 7 8]

and the crossover points are 3 and 6, the function returns the following child.

child = [a b c 4 5 6 g h]

Caution Do not use @crossovertwopoint when you have linear constraints.
Otherwise, your population will not necessarily satisfy the constraints.

• Intermediate (@crossoverintermediate), the default crossover function when
there are linear constraints, creates children by taking a weighted average of the
parents. You can specify the weights by a single parameter, Ratio, which can be a
scalar or a row vector of length Number of variables. The default is a vector of all
1's. The function creates the child from parent1 and parent2 using the following
formula.

child = parent1 + rand * Ratio * ( parent2 - parent1)

If all the entries of Ratio lie in the range [0, 1], the children produced are within the
hypercube defined by placing the parents at opposite vertices. If Ratio is not in that
range, the children might lie outside the hypercube. If Ratio is a scalar, then all the
children lie on the line between the parents.

To change the default value of Ratio at the command line, use the syntax

options = gaoptimset('CrossoverFcn', ...  

{@crossoverintermediate, ratio});

where ratio is the value of Ratio.
• Heuristic (@crossoverheuristic) returns a child that lies on the line containing

the two parents, a small distance away from the parent with the better fitness value
in the direction away from the parent with the worse fitness value. You can specify
how far the child is from the better parent by the parameter Ratio, which appears
when you select Heuristic. The default value of Ratio is 1.2. If parent1 and
parent2 are the parents, and parent1 has the better fitness value, the function
returns the child
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child = parent2 + R * (parent1 - parent2);

To change the default value of Ratio at the command line, use the syntax

options=gaoptimset('CrossoverFcn',...

                   {@crossoverheuristic,ratio});

where ratio is the value of Ratio.
• Arithmetic (@crossoverarithmetic) creates children that are the weighted

arithmetic mean of two parents. Children are always feasible with respect to linear
constraints and bounds.

• Custom enables you to write your own crossover function. To specify the crossover
function using the Optimization app,

• Set Crossover function to Custom.
• Set Function name to @myfun, where myfun is the name of your function.

If you are using ga, set

options = gaoptimset('CrossoverFcn',@myfun);

Your crossover function must have the following calling syntax.

xoverKids = myfun(parents, options, nvars, FitnessFcn, ...

    unused,thisPopulation)

The arguments to the function are

• parents — Row vector of parents chosen by the selection function
• options — options structure
• nvars — Number of variables
• FitnessFcn — Fitness function
• unused — Placeholder not used
• thisPopulation — Matrix representing the current population. The number of

rows of the matrix is Population size and the number of columns is Number of
variables.
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The function returns xoverKids—the crossover offspring—as a matrix where rows
correspond to the children. The number of columns of the matrix is Number of
variables.

“Passing Extra Parameters” in the Optimization Toolbox documentation explains how
to provide additional parameters to the function.

Caution When you have bounds or linear constraints, ensure that your crossover
function creates individuals that satisfy these constraints. Otherwise, your population
will not necessarily satisfy the constraints.

Migration Options

Note: Subpopulations refer to a form of parallel processing for the genetic algorithm.
ga currently does not support this form. In subpopulations, each worker hosts a
number of individuals. These individuals are a subpopulation. The worker evolves the
subpopulation independently of other workers, except when migration causes some
individuals to travel between workers.

Because ga does not currently support this form of parallel processing, there is no
benefit to setting PopulationSize to a vector, or to setting the MigrationDirection,
MigrationInterval, or MigrationFraction options.

Migration options specify how individuals move between subpopulations. Migration
occurs if you set Population size to be a vector of length greater than 1. When
migration occurs, the best individuals from one subpopulation replace the worst
individuals in another subpopulation. Individuals that migrate from one subpopulation
to another are copied. They are not removed from the source subpopulation.

You can control how migration occurs by the following three fields in the Migration
options pane:

• Direction (MigrationDirection) — Migration can take place in one or both
directions.
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• If you set Direction to Forward ('forward'), migration takes place toward
the last subpopulation. That is, the nth subpopulation migrates into the (n+1)th
subpopulation.

• If you set Direction to Both ('both'), the nth subpopulation migrates into both
the (n–1)th and the (n+1)th subpopulation.

Migration wraps at the ends of the subpopulations. That is, the last subpopulation
migrates into the first, and the first may migrate into the last.

• Interval (MigrationInterval) — Specifies how many generation pass between
migrations. For example, if you set Interval to 20, migration takes place every 20
generations.

• Fraction (MigrationFraction) — Specifies how many individuals move
between subpopulations. Fraction specifies the fraction of the smaller of the two
subpopulations that moves. For example, if individuals migrate from a subpopulation
of 50 individuals into a subpopulation of 100 individuals and you set Fraction to 0.1,
the number of individuals that migrate is 0.1*50=5.

Constraint Parameters

Constraint parameters refer to the nonlinear constraint solver. For details on the
algorithm, see “Nonlinear Constraint Solver Algorithms” on page 5-49.

Choose between the nonlinear constraint algorithms by setting the
NonlinConAlgorithm option to 'auglag' (Augmented Lagrangian) or 'penalty'
(Penalty algorithm).

• “Augmented Lagrangian Genetic Algorithm” on page 10-47
• “Penalty Algorithm” on page 10-48

Augmented Lagrangian Genetic Algorithm

• Initial penalty (InitialPenalty) — Specifies an initial value of the penalty
parameter that is used by the nonlinear constraint algorithm. Initial penalty must
be greater than or equal to 1, and has a default of 10.

• Penalty factor (PenaltyFactor) — Increases the penalty parameter when the
problem is not solved to required accuracy and constraints are not satisfied. Penalty
factor must be greater than 1, and has a default of 100.
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Penalty Algorithm

The penalty algorithm uses the gacreationnonlinearfeasible creation
function by default. This creation function uses fmincon to find feasible
individuals. gacreationnonlinearfeasible starts fmincon from a variety
of initial points within the bounds from the PopInitRange option. Optionally,
gacreationnonlinearfeasible can run fmincon in parallel on the initial points.

You can specify tuning parameters for gacreationnonlinearfeasible using the
following name-value pairs.

Name Value

SolverOpts fmincon options, created using optimoptions or optimset.
UseParallel When true, run fmincon in parallel on initial points; default is

false.
NumStartPts Number of start points, a positive integer up to

sum(PopulationSize) in value.

Include the name-value pairs in a cell array along with
@gacreationnonlinearfeasible.

options = gaoptimset('CreationFcn',{@gacreationnonlinearfeasible,...

    'UseParallel',true,'NumStartPts',20});

Multiobjective Options

Multiobjective options define parameters characteristic of the multiobjective genetic
algorithm. You can specify the following parameters:

• DistanceMeasureFcn — Defines a handle to the function that computes distance
measure of individuals, computed in decision variable or design space (genotype) or
in function space (phenotype). For example, the default distance measure function is
distancecrowding in function space, or {@distancecrowding,'phenotype'}.

• ParetoFraction — Sets the fraction of individuals to keep on the first Pareto front
while the solver selects individuals from higher fronts. This option is a scalar between
0 and 1.
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Hybrid Function Options

A hybrid function is another minimization function that runs after the genetic algorithm
terminates. You can specify a hybrid function in Hybrid function (HybridFcn) options.
Do not use with integer problems. The choices are

• [] — No hybrid function.
• fminsearch (@fminsearch) — Uses the MATLAB function fminsearch to perform

unconstrained minimization.
• patternsearch (@patternsearch) — Uses a pattern search to perform constrained

or unconstrained minimization.
• fminunc (@fminunc) — Uses the Optimization Toolbox function fminunc to perform

unconstrained minimization.
• fmincon (@fmincon) — Uses the Optimization Toolbox function fmincon to perform

constrained minimization.

You can set separate options for the hybrid function. Use optimset for fminsearch,
psoptimset for patternsearch, or optimoptions for fmincon or fminunc. For
example:

hybridopts = optimoptions('fminunc','Display','iter','Algorithm','quasi-newton');

Include the hybrid options in the Genetic Algorithm options structure as follows:

options = gaoptimset(options,'HybridFcn',{@fminunc,hybridopts}); 

hybridopts must exist before you set options.

See “Include a Hybrid Function” on page 5-104 for an example.

Stopping Criteria Options

Stopping criteria determine what causes the algorithm to terminate. You can specify the
following options:

• Generations (Generations) — Specifies the maximum number of iterations for the
genetic algorithm to perform. The default is 100*numberOfVariables.

• Time limit (TimeLimit) — Specifies the maximum time in seconds the genetic
algorithm runs before stopping, as measured by tic and toc. This limit is enforced
after each iteration, so ga can exceed the limit when an iteration takes substantial
time.
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• Fitness limit (FitnessLimit) — The algorithm stops if the best fitness value is less
than or equal to the value of Fitness limit.

• Stall generations (StallGenLimit) — The algorithm stops if the average
relative change in the best fitness function value over Stall generations is less
than or equal to Function tolerance. (If the Stall Test (StallTest) option is
'geometricWeighted', then the test is for a geometric weighted average relative
change.) For a problem with nonlinear constraints, Stall generations applies to the
subproblem (see “Nonlinear Constraint Solver Algorithms” on page 5-49).

For gamultiobj, if the weighted average relative change in the spread of the Pareto
solutions over Stall generations is less than Function tolerance, and the spread is
smaller than the average spread over the last Stall generations, then the algorithm
stops. The spread is a measure of the movement of the Pareto front.

• Stall time limit (StallTimeLimit) — The algorithm stops if there is no
improvement in the best fitness value for an interval of time in seconds specified by
Stall time limit, as measured by tic and toc.

• Function tolerance (TolFun) — The algorithm stops if the average relative change
in the best fitness function value over Stall generations is less than or equal to
Function tolerance. (If the StallTest option is 'geometricWeighted', then the
test is for a geometric weighted average relative change.)

For gamultiobj, if the weighted average relative change in the spread of the Pareto
solutions over Stall generations is less than Function tolerance, and the spread is
smaller than the average spread over the last Stall generations, then the algorithm
stops. The spread is a measure of the movement of the Pareto front.

• Constraint tolerance (TolCon) — The Constraint tolerance is not used as
stopping criterion. It is used to determine the feasibility with respect to nonlinear
constraints. Also, max(sqrt(eps),TolCon) determines feasibility with respect to
linear constraints.

See “Set Maximum Number of Generations” on page 5-108 for an example.

Output Function Options

Output functions are functions that the genetic algorithm calls at each generation. To
specify the output function using the Optimization app,

• Select Custom function.
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• Enter @myfun in the text box, where myfun is the name of your function. Write myfun
with appropriate syntax.

• To pass extra parameters in the output function, use “Anonymous Functions”.
• For multiple output functions, enter a cell array of output function handles:

{@myfun1,@myfun2,...}.

At the command line, set

options = gaoptimset('OutputFcns',@myfun);

For multiple output functions, enter a cell array:

options = gaoptimset('OutputFcns',{@myfun1,@myfun2,...});

To see a template that you can use to write your own output functions, enter

edit gaoutputfcntemplate

at the MATLAB command line.

Structure of the Output Function

The output function has the following calling syntax.

[state,options,optchanged] = myfun(options,state,flag)

The function has the following input arguments:

• options — Options structure
• state — Structure containing information about the current generation. “The State

Structure” on page 10-31 describes the fields of state.
• flag — String indicating the current status of the algorithm as follows:

• 'init' — Initial stage
• 'iter' — Algorithm running
• 'interrupt' — Intermediate stage
• 'done' — Algorithm terminated

“Passing Extra Parameters” in the Optimization Toolbox documentation explains how to
provide additional parameters to the function.

The output function returns the following arguments to ga:



10 Options Reference

10-52

• state — Structure containing information about the current generation. “The State
Structure” on page 10-31 describes the fields of state. To stop the iterations, set
state.StopFlag to a nonempty string.

• options — Options structure modified by the output function. This argument is
optional.

• optchanged — Flag indicating changes to options

Display to Command Window Options

Level of display ('Display') specifies how much information is displayed at the
command line while the genetic algorithm is running. The available options are

• Off ('off') — No output is displayed.
• Iterative ('iter') — Information is displayed at each iteration.
• Diagnose ('diagnose') — Information is displayed at each iteration. In addition,

the diagnostic lists some problem information and the options that have been changed
from the defaults.

• Final ('final') — The reason for stopping is displayed.

Both Iterative and Diagnose display the following information:

• Generation — Generation number
• f-count — Cumulative number of fitness function evaluations
• Best f(x) — Best fitness function value
• Mean f(x) — Mean fitness function value
• Stall generations — Number of generations since the last improvement of the

fitness function

When a nonlinear constraint function has been specified, Iterative and Diagnose do
not display the Mean f(x), but will additionally display:

• Max Constraint — Maximum nonlinear constraint violation

The default value of Level of display is

• Off in the Optimization app
• 'final' in an options structure created using gaoptimset
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Vectorize and Parallel Options (User Function Evaluation)

You can choose to have your fitness and constraint functions evaluated in serial, parallel,
or in a vectorized fashion. These options are available in the User function evaluation
section of the Options pane of the Optimization app, or by setting the 'Vectorized'
and 'UseParallel' options with gaoptimset.

• When Evaluate fitness and constraint functions ('Vectorized') is in serial
('off'), ga calls the fitness function on one individual at a time as it loops through
the population. (At the command line, this assumes 'UseParallel' is at its default
value of false.)

• When Evaluate fitness and constraint functions ('Vectorized') is vectorized
('on'), ga calls the fitness function on the entire population at once, i.e., in a single
call to the fitness function.

If there are nonlinear constraints, the fitness function and the nonlinear constraints
all need to be vectorized in order for the algorithm to compute in a vectorized manner.

See “Vectorize the Fitness Function” on page 5-110 for an example.
• When Evaluate fitness and constraint functions (UseParallel) is in parallel

(true), ga calls the fitness function in parallel, using the parallel environment you
established (see “How to Use Parallel Processing” on page 9-12). At the command line,
set UseParallel to false to compute serially.

Note: You cannot simultaneously use vectorized and parallel computations. If you set
'UseParallel' to true and 'Vectorized' to 'on', ga evaluates your fitness and
constraint functions in a vectorized manner, not in parallel.

How Fitness and Constraint Functions Are Evaluated

 Vectorized = 'Off' Vectorized = 'On'

UseParallel = false Serial Vectorized
UseParallel = true Parallel Vectorized
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Particle Swarm Options

In this section...

“Specifying Options for particleswarm” on page 10-54
“Swarm Creation” on page 10-54
“Display Settings” on page 10-55
“Algorithm Settings” on page 10-56
“Hybrid Function” on page 10-57
“Output Function and Plot Function” on page 10-57
“Parallel or Vectorized Function Evaluation” on page 10-59
“Stopping Criteria” on page 10-60

Specifying Options for particleswarm

Create options using the optimoptions function as follows.

options = optimoptions('particleswarm','Param1',value1,'Param2',value2,...);

For an example, see “Optimize Using Particle Swarm” on page 6-3.

Each option in this section is listed by its field name in options. For example, Display
refers to the corresponding field of options.

Swarm Creation

By default, particleswarm calls the @pswcreationuniform swarm creation function.
This function works as follows.

1 If an InitialSwarm option exists, @pswcreationuniform takes the first
SwarmSize rows of the InitialSwarm matrix as the swarm. If the number
of rows of the InitialSwarm matrix is smaller than SwarmSize, then
@pswcreationuniform continues to the next step.

2 @pswcreationuniform creates enough particles so that there are
SwarmSize in total. @pswcreationuniform creates particles that are
randomly, uniformly distributed. The range for any swarm component is -
InitialSwarmSpan/2,InitialSwarmSpan/2, shifted and scaled if necessary to
match any bounds.
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After creation, particleswarm checks that all particles satisfy any bounds, and
truncates components if necessary. If the Display option is 'iter' and a particle
needed truncation, then particleswarm notifies you.

Custom Creation Function

Set a custom creation function using optimoptions to set the CreationFcn option to
@customcreation, where customcreation is the name of your creation function file. A
custom creation function has this syntax.

swarm = customcreation(problem)

The creation function should return a matrix of size SwarmSize-by-nvars,
where each row represents the location of one particle. See problem for details
of the problem structure. In particular, you can obtain SwarmSize from
problem.options.SwarmSize, and nvars from problem.nvars.

For an example of a creation function, see the code for pswcreationuniform.

edit pswcreationuniform

Display Settings

The Display option specifies how much information is displayed at the command line
while the algorithm is running.

• 'off' or 'none' — No output is displayed.
• 'iter' — Information is displayed at each iteration.
• 'final' (default) — The reason for stopping is displayed.

iter displays:

• Iteration — Iteration number
• f-count — Cumulative number of objective function evaluations
• Best f(x) — Best objective function value
• Mean f(x) — Mean objective function value over all particles
• Stall Iterations — Number of iterations since the last change in Best f(x)

The DisplayInterval option sets the number of iterations that are performed before
the iterative display updates. Give a positive integer.
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Algorithm Settings

The details of the particleswarm algorithm appear in “Particle Swarm Optimization
Algorithm” on page 6-10. This section describes the tuning parameters.

The main step in the particle swarm algorithm is the generation of new velocities for the
swarm:

For u1 and u2 uniformly (0,1) distributed random vectors of length nvars, update the
velocity
v = W*v + y1*u1.*(p-x) + y2*u2.*(g-x).

The variables W = inertia, y1 = SelfAdjustment, and y2 = SocialAdjustment.

This update uses a weighted sum of:

• The previous velocity v
• x-p, the difference between the current position x and the best position p the particle

has seen
• x-g, the difference between the current position x and the best position g in the

current neighborhood

Based on this formula, the options have the following effect:

• Larger absolute value of inertia W leads to the new velocity being more in the same
line as the old, and with a larger absolute magnitude. A large absolute value of W can
destabilize the swarm. The value of W stays within the range of the two-element vector
InertiaRange.

• Larger values of y1 = SelfAdjustment make the particle head more toward the
best place it has visited.

• Larger values of y2 = SocialAdjustment make the particle head more toward the
best place in the current neighborhood.

Large values of inertia, SelfAdjustment, or SocialAdjustment can destabilize the
swarm.

The MinFractionNeighbors option sets both the initial neighborhood size for each
particle, and the minimum neighborhood size; see “Particle Swarm Optimization
Algorithm” on page 6-10. Setting MinFractionNeighbors to 1 has all members of the
swarm use the global minimum point as their societal adjustment target.
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See “Optimize Using Particle Swarm” on page 6-3 for an example that sets a few of these
tuning options.

Hybrid Function

A hybrid function is another minimization function that runs after the particle swarm
algorithm terminates. You can specify a hybrid function in the HybridFcn option. The
choices are

• [] — No hybrid function.
• fminsearch (@fminsearch) — Use the MATLAB function fminsearch to perform

unconstrained minimization.
• patternsearch (@patternsearch) — Use a pattern search to perform constrained

or unconstrained minimization.
• fminunc (@fminunc) — Use the Optimization Toolbox function fminunc to perform

unconstrained minimization.
• fmincon (@fmincon) — Use the Optimization Toolbox function fmincon to perform

constrained minimization.

You can set separate options for the hybrid function. Use optimset for fminsearch,
psoptimset for patternsearch, or optimoptions for fmincon or fminunc. For
example:

hybridopts = optimoptions('fminunc','Display','iter','Algorithm','quasi-newton');

Include the hybrid options in the particleswarm options as follows:

options = optimoptions(options,'HybridFcn',{@fminunc,hybridopts}); 

hybridopts must exist before you set options.

For an example that uses a hybrid function, see “Optimize Using Particle Swarm” on
page 6-3.

Output Function and Plot Function

Output functions are functions that particleswarm calls at each iteration. Output
functions can halt particleswarm, or can perform other tasks. To specify an output
function,

options = optimoptions(@particleswarm,'OutputFcns',@outfun)
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where outfun is a function with syntax specified in “Structure of the Output Function or
Plot Function” on page 10-58. If you have several output functions, pass them in a cell
array:

options = optimoptions(@particleswarm,'OutputFcns',{@outfun1,@outfun2,@outfun3})

Similarly, plot functions are functions that particleswarm calls at each iteration. The
difference between an output function and a plot function is that a plot function has
built-in plotting enhancements, such as buttons that appear on the plot window to pause
or stop particleswarm. To specify a plot function,

options = optimoptions(@particleswarm,'PlotFcns',@plotfun)

where plotfun is a function with syntax specified in “Structure of the Output Function
or Plot Function” on page 10-58. If you have several plot functions, pass them in a cell
array:

options = optimoptions(@particleswarm,'PlotFcns',{@plotfun1,@plotfun2,@plotfun3})

The lone built-in plot function @pswplotbestf plots the best objective function value
against iterations.

For an example of a custom output function, see “Particle Swarm Output Function” on
page 6-7.

Structure of the Output Function or Plot Function

An output function has the following calling syntax:

stop = myfun(optimValues,state)

If your function sets stop to true, iterations end. Set stop to false to have
particleswarm continue to calculate.

The function has the following input arguments:

• optimValues — Structure containing information about the swarm in the current
iteration. Details are in “optimValues Structure” on page 10-59.

• state — String giving the state of the current iteration.

• 'init' — The solver has not begun to iterate. Your output function or plot
function can use this state to open files, or set up data structures or plots for
subsequent iterations.
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• 'iter' — The solver is proceeding with its iterations. Typically, this is where
your output function or plot function performs its work.

• 'done' — The solver reached a stopping criterion. Your output function or plot
function can use this state to clean up, such as closing any files it opened.

“Passing Extra Parameters” in the Optimization Toolbox documentation explains how to
provide additional parameters to output functions or plot functions.

optimValues Structure

particleswarm passes the optimValues structure to your output functions or plot
functions. The optimValues structure has the following fields.

Field Contents

funccount Total number of objective function evaluations.
bestx Best solution point found, corresponding to the best objective

function value bestfval.
bestfval Best (lowest) objective function value found.
iteration Iteration number.
meanfval Mean objective function among all particles at the current

iteration.
stalliterations Number of iterations since the last change in bestfval.
swarm Matrix containing the particle positions. Each row contains

the position of one particle, and the number of rows is equal
to the swarm size.

swarmfvals Vector containing the objective function values of
particles in the swarm. For particle i, swarmfvals(i) =
fun(swarm(i,:)), where fun is the objective function.

Parallel or Vectorized Function Evaluation

For increased speed, you can set your options so that particleswarm evaluates the
objective function for the swarm in parallel or in a vectorized fashion. You can use only
one of these options. If you set UseParallel to true and Vectorized to 'on', then the
computations are done in a vectorized fashion, and not in parallel.

• “Parallel particleswarm” on page 10-60
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• “Vectorized particleswarm” on page 10-60

Parallel particleswarm

If you have a Parallel Computing Toolbox license, you can distribute the evaluation of the
objective functions to the swarm among your processors or cores. Set the UseParallel
option to true.

Parallel computation is likely to be faster than serial when your objective function is
computationally expensive, or when you have many particles and processors. Otherwise,
communication overhead can cause parallel computation to be slower than serial
computation.

For details, see “Parallel Computing”.

Vectorized particleswarm

If your objective function can evaluate all the particles at once, you can usually save
time by setting the Vectorized option to 'on'. Your objective function should accept
an M-by-N matrix, where each row represents one particle, and return an M-by-1 vector of
objective function values. This option works the same way as the patternsearch and
ga Vectorized options. For patternsearch details, see “Vectorize the Objective and
Constraint Functions” on page 4-80.

Stopping Criteria

particleswarm stops iterating when any of the following occur.

Stopping Option Stopping Test Exit Flag

StallIterLimit and
TolFun

Relative change in the
best objective function
value g over the last
StallIterLimit iterations
is less than TolFun.

1

MaxIter Number of iterations
reaches MaxIter.

0

OutputFcns or PlotFcns OutputFcns or PlotFcns
can halt the iterations.

-1
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Stopping Option Stopping Test Exit Flag

ObjectiveLimit Best objective function
value g is less than or equal
to ObjectiveLimit.

-3

StallTimeLimit Best objective function
value g did not change in
the last StallTimeLimit
seconds.

-4

MaxTime Function run time exceeds
MaxTime seconds.

-5

Also, if you set the FunValCheck option to 'on', and the swarm has particles with NaN,
Inf, or complex objective function values, particleswarm stops and issues an error.
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Simulated Annealing Options

In this section...

“saoptimset At The Command Line” on page 10-62
“Plot Options” on page 10-62
“Temperature Options” on page 10-64
“Algorithm Settings” on page 10-65
“Hybrid Function Options” on page 10-66
“Stopping Criteria Options” on page 10-67
“Output Function Options” on page 10-68
“Display Options” on page 10-69

saoptimset At The Command Line

Specify options by creating an options structure using the saoptimset function as
follows:

options = saoptimset('Param1',value1,'Param2',value2, ...);

See “Set Options for simulannealbnd at the Command Line” on page 7-16 for examples.

Each option in this section is listed by its field name in the options structure. For
example, InitialTemperature refers to the corresponding field of the options
structure.

Plot Options

Plot options enable you to plot data from the simulated annealing solver while it is
running.

PlotInterval specifies the number of iterations between consecutive calls to the plot
function.

To display a plot when calling simulannealbnd from the command line, set the
PlotFcns field of options to be a function handle to the plot function. You can specify
any of the following plots:
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• @saplotbestf plots the best objective function value.
• @saplotbestx plots the current best point.
• @saplotf plots the current function value.
• @saplotx plots the current point.
• @saplotstopping plots stopping criteria levels.
• @saplottemperature plots the temperature at each iteration.
• @myfun plots a custom plot function, where myfun is the name of your function. See

“Structure of the Plot Functions” on page 10-11 for a description of the syntax.

For example, to display the best objective plot, set options as follows

options = saoptimset('PlotFcns',@saplotbestf);

To display multiple plots, use the cell array syntax

options = saoptimset('PlotFcns',{@plotfun1,@plotfun2, ...});

where @plotfun1, @plotfun2, and so on are function handles to the plot functions.

If you specify more than one plot function, all plots appear as subplots in the same
window. Right-click any subplot to obtain a larger version in a separate figure window.

Structure of the Plot Functions

The first line of a plot function has the form

function stop = plotfun(options,optimvalues,flag)

The input arguments to the function are

• options — Options structure created using saoptimset.
• optimvalues — Structure containing information about the current state of the

solver. The structure contains the following fields:

• x — Current point
• fval — Objective function value at x
• bestx — Best point found so far
• bestfval — Objective function value at best point
• temperature — Current temperature
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• iteration — Current iteration
• funccount — Number of function evaluations
• t0 — Start time for algorithm
• k — Annealing parameter

• flag — Current state in which the plot function is called. The possible values for
flag are

• 'init' — Initialization state
• 'iter' — Iteration state
• 'done' — Final state

The output argument stop provides a way to stop the algorithm at the current iteration.
stop can have the following values:

• false — The algorithm continues to the next iteration.
• true — The algorithm terminates at the current iteration.

Temperature Options

Temperature options specify how the temperature will be lowered at each iteration over
the course of the algorithm.

• InitialTemperature — Initial temperature at the start of the algorithm. The
default is 100. The initial temperature can be a vector with the same length as x, the
vector of unknowns. simulannealbnd expands a scalar initial temperature into a
vector.

• TemperatureFcn — Function used to update the temperature schedule. Let k denote
the annealing parameter. (The annealing parameter is the same as the iteration
number until reannealing.) The options are:

• @temperatureexp — The temperature is equal to InitialTemperature * 0.95^k.
This is the default.

• @temperaturefast — The temperature is equal to InitialTemperature / k.
• @temperatureboltz — The temperature is equal to InitialTemperature / ln(k).
• @myfun — Uses a custom function, myfun, to update temperature. The syntax is:

temperature = myfun(optimValues,options)



 Simulated Annealing Options

10-65

where optimValues is a structure described in “Structure of the Plot
Functions” on page 10-63. options is either the structure created with
saoptimset, or the structure of default options, if you did not create an options
structure. Both the annealing parameter optimValues.k and the temperature
optimValues.temperature are vectors with length equal to the number of
elements of the current point x. For example, the function temperaturefast is:

temperature = options.InitialTemperature./optimValues.k;

Algorithm Settings

Algorithm settings define algorithmic specific parameters used in generating new points
at each iteration.

Parameters that can be specified for simulannealbnd are:

• DataType — Type of data to use in the objective function. Choices:

• 'double' (default) — A vector of type double.
• 'custom' — Any other data type. You must provide a 'custom' annealing

function. You cannot use a hybrid function.
• AnnealingFcn — Function used to generate new points for the next iteration. The

choices are:

• @annealingfast — The step has length temperature, with direction uniformly at
random. This is the default.

• @annealingboltz — The step has length square root of temperature, with
direction uniformly at random.

• @myfun — Uses a custom annealing algorithm, myfun. The syntax is:

newx = myfun(optimValues,problem)

where optimValues is a structure described in “Structure of the Output
Function” on page 10-68, and problem is a structure containing the following
information:

• objective: function handle to the objective function
• x0: the start point
• nvar: number of decision variables
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• lb: lower bound on decision variables
• ub: upper bound on decision variables

For example, the current position is optimValues.x, and the current objective
function value is problem.objective(optimValues.x).

• ReannealInterval — Number of points accepted before reannealing. The default
value is 100.

• AcceptanceFcn — Function used to determine whether a new point is accepted or
not. The choices are:

• @acceptancesa — Simulated annealing acceptance function, the default. If the
new objective function value is less than the old, the new point is always accepted.
Otherwise, the new point is accepted at random with a probability depending on
the difference in objective function values and on the current temperature. The
acceptance probability is

1

1 + Ê
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ˆ
¯̃

exp
max( )

,
D

T

where Δ = new objective – old objective, and T is the current temperature. Since
both Δ and T are positive, the probability of acceptance is between 0 and 1/2.
Smaller temperature leads to smaller acceptance probability. Also, larger Δ leads
to smaller acceptance probability.

• @myfun — A custom acceptance function, myfun. The syntax is:

acceptpoint = myfun(optimValues,newx,newfval);

where optimValues is a structure described in “Structure of the Output
Function” on page 10-68, newx is the point being evaluated for acceptance, and
newfval is the objective function at newx. acceptpoint is a Boolean, with value
true to accept newx, and false to reject newx.

Hybrid Function Options

A hybrid function is another minimization function that runs during or at the end of
iterations of the solver. HybridInterval specifies the interval (if not never or end)
at which the hybrid function is called. You can specify a hybrid function using the
HybridFcn option. The choices are:
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• [] — No hybrid function.
• @fminsearch — Uses the MATLAB function fminsearch to perform unconstrained

minimization.
• @patternsearch — Uses patternsearch to perform constrained or unconstrained

minimization.
• @fminunc — Uses the Optimization Toolbox function fminunc to perform

unconstrained minimization.
• @fmincon — Uses the Optimization Toolbox function fmincon to perform

constrained minimization.

You can set separate options for the hybrid function. Use optimset for fminsearch,
psoptimset for patternsearch, or optimoptions for fmincon or fminunc. For
example:

hybridopts = optimoptions('fminunc','Display','iter','Algorithm','quasi-newton');

Include the hybrid options in the simulannealbnd options structure as follows:

options = saoptimset(options,'HybridFcn',{@fminunc,hybridopts}); 

hybridopts must exist before you set options.

See “Include a Hybrid Function” on page 5-104 for an example.

Stopping Criteria Options

Stopping criteria determine what causes the algorithm to terminate. You can specify the
following options:

• TolFun — The algorithm runs until the average change in value of the objective
function in StallIterLim iterations is less than TolFun. The default value is 1e-6.

• MaxIter — The algorithm stops if the number of iterations exceeds this maximum
number of iterations. You can specify the maximum number of iterations as a positive
integer or Inf. Inf is the default.

• MaxFunEval specifies the maximum number of evaluations of the objective
function. The algorithm stops if the number of function evaluations exceeds
the maximum number of function evaluations. The allowed maximum is
3000*numberofvariables.

• TimeLimit specifies the maximum time in seconds the algorithm runs before
stopping.
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• ObjectiveLimit — The algorithm stops if the best objective function value is less
than or equal to the value of ObjectiveLimit.

Output Function Options

Output functions are functions that the algorithm calls at each iteration. The default
value is to have no output function, []. You must first create an output function using
the syntax described in “Structure of the Output Function” on page 10-68.

Using the Optimization app:

• Specify Output function as @myfun, where myfun is the name of your function.
• To pass extra parameters in the output function, use “Anonymous Functions”.
• For multiple output functions, enter a cell array of output function handles:

{@myfun1,@myfun2,...}.

At the command line:

• options = saoptimset('OutputFcns',@myfun);

• For multiple output functions, enter a cell array:

options = saoptimset('OutputFcns',{@myfun1,@myfun2,...});

To see a template that you can use to write your own output functions, enter

edit saoutputfcntemplate

at the MATLAB command line.

Structure of the Output Function

The output function has the following calling syntax.

[stop,options,optchanged] = myfun(options,optimvalues,flag)

The function has the following input arguments:

• options — Options structure created using saoptimset.
• optimvalues — Structure containing information about the current state of the

solver. The structure contains the following fields:

• x — Current point
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• fval — Objective function value at x
• bestx — Best point found so far
• bestfval — Objective function value at best point
• temperature — Current temperature, a vector the same length as x
• iteration — Current iteration
• funccount — Number of function evaluations
• t0 — Start time for algorithm
• k — Annealing parameter, a vector the same length as x

• flag — Current state in which the output function is called. The possible values for
flag are

• 'init' — Initialization state
• 'iter' — Iteration state
• 'done' — Final state

“Passing Extra Parameters” in the Optimization Toolbox documentation explains how to
provide additional parameters to the output function.

The output function returns the following arguments:

• stop — Provides a way to stop the algorithm at the current iteration. stop can have
the following values:

• false — The algorithm continues to the next iteration.
• true — The algorithm terminates at the current iteration.

• options — Options structure modified by the output function.
• optchanged — A boolean flag indicating changes were made to options. This must

be set to true if options are changed.

Display Options

Use the Display option to specify how much information is displayed at the command
line while the algorithm is running. The available options are

• off — No output is displayed. This is the default value for an options structure
created using saoptimset.
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• iter — Information is displayed at each iteration.
• diagnose — Information is displayed at each iteration. In addition, the diagnostic

lists some problem information and the options that have been changed from the
defaults.

• final — The reason for stopping is displayed. This is the default.

Both iter and diagnose display the following information:

• Iteration — Iteration number
• f-count — Cumulative number of objective function evaluations
• Best f(x) — Best objective function value
• Current f(x) — Current objective function value
• Mean Temperature — Mean temperature function value
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createOptimProblem
Create optimization problem structure

Syntax

problem = createOptimProblem('solverName')

problem =

createOptimProblem('solverName','ParameterName',ParameterValue,...)

Description

problem = createOptimProblem('solverName') creates an empty optimization
problem structure for the solverName solver.

problem =

createOptimProblem('solverName','ParameterName',ParameterValue,...)

accepts one or more comma-separated parameter name/value pairs. Specify
ParameterName inside single quotes.

Input Arguments

solverName

Name of the solver. For a GlobalSearch problem, use 'fmincon'. For a MultiStart
problem, use 'fmincon', 'fminunc', 'lsqcurvefit' or 'lsqnonlin'.

Parameter Name/Value Pairs

'Aeq'

Matrix for linear equality constraints. The constraints have the form:

Aeq x = beq
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'Aineq'

Matrix for linear inequality constraints. The constraints have the form:

Aineq x ≤ bineq

'beq'

Vector for linear equality constraints. The constraints have the form:

Aeq x = beq

'bineq'

Vector for linear inequality constraints. The constraints have the form:

Aineq x ≤ bineq

'lb'

Vector of lower bounds.

lb can also be an array; see “Matrix Arguments”.

'nonlcon'

Function handle to the nonlinear constraint function. The constraint function must
accept a vector x and return two vectors: c, the nonlinear inequality constraints, and
ceq, the nonlinear equality constraints. If one of these constraint functions is empty,
nonlcon must return [] for that function.

If the GradConstr option is 'on', then in addition nonlcon must return two additional
outputs, gradc and gradceq. The gradc parameter is a matrix with one column for the
gradient of each constraint, as is gradceq.

For more information, see “Write Constraints” on page 2-6.

'objective'

Function handle to the objective function. For all solvers except lsqnonlin and
lsqcurvefit, the objective function must accept a vector x and return a scalar. If the
GradObj option is 'on', then the objective function must return a second output, a
vector, representing the gradient of the objective. For lsqnonlin, the objective function
must accept a vector x and return a vector. lsqnonlin sums the squares of the objective
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function values. For lsqcurvefit, the objective function must accept two inputs, x and
xdata, and return a vector.

For more information, see “Compute Objective Functions” on page 2-2.

'options'

Optimization options. Create options with optimoptions, or by exporting from the
Optimization app.

'ub'

Vector of upper bounds.

ub can also be an array; see “Matrix Arguments”.

'x0'

A vector, a potential starting point for the optimization. Gives the dimensionality of the
problem.

x0 can also be an array; see “Matrix Arguments”.

'xdata'

Vector of data points for lsqcurvefit.

'ydata'

Vector of data points for lsqcurvefit.

Output Arguments

problem

Optimization problem structure.

Examples
Create a problem structure using Rosenbrock's function as objective (see “Include a
Hybrid Function” on page 5-104), the interior-point algorithm for fmincon, and
bounds with absolute value 2:
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anonrosen = @(x)(100*(x(2) - x(1)^2)^2 + (1-x(1))^2);

opts = optimoptions(@fmincon,'Algorithm','interior-point');

problem = createOptimProblem('fmincon','x0',randn(2,1),...

    'objective',anonrosen,'lb',[-2;-2],'ub',[2;2],...

    'options',opts);

Alternatives

You can create a problem structure by exporting from the Optimization app
(optimtool), as described in “Exporting from the Optimization app” on page 3-9.

See Also
optimtool | MultiStart | GlobalSearch
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CustomStartPointSet class

User-supplied start points

Description
An object wrapper of a matrix whose rows represent start points for MultiStart.

Construction
tpoints = CustomStartPointSet(ptmatrix) generates a CustomStartPointSet
object from the ptmatrix matrix. Each row of ptmatrix represents one start point.

Properties
DimStartPoints

Dimension of each start point, a read-only property. DimStartPoints is the number of
columns in ptmatrix.

DimStartPoints should be the same as the number of elements in problem.x0, the
problem structure you pass to run.

NumStartPoints

Number of start points, a read-only property. This is the number of rows in ptmatrix.

Methods
list List custom start points in set

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB Programming Fundamentals documentation.
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Examples

Create a CustomStartPointSet object with 40 three-dimensional rows. Each row
represents a normally distributed random variable with mean [10,10,10] and variance
diag([4,4,4]):

fortypts = 10*ones(40,3) + 4*randn(40,3); % a matrix

startpts = CustomStartPointSet(fortypts);

startpts is the fortypts matrix in an object wrapper.

Get the fortypts matrix from the startpts object of the previous example:

fortypts = list(startpts);

See Also
list | RandomStartPointSet | MultiStart

How To
• Class Attributes
• Property Attributes
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ga

Find minimum of function using genetic algorithm

Syntax

x = ga(fitnessfcn,nvars)

x = ga(fitnessfcn,nvars,A,b)

x = ga(fitnessfcn,nvars,A,b,Aeq,beq)

x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB)

x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon)

x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options)

x = ga(fitnessfcn,nvars,A,b,[],[],LB,UB,nonlcon,IntCon)

x = ga(fitnessfcn,nvars,A,b,[],[],LB,UB,nonlcon,IntCon,options)

x = ga(problem)

[x,fval] = ga(fitnessfcn,nvars,...)

[x,fval,exitflag] = ga(fitnessfcn,nvars,...)

[x,fval,exitflag,output] = ga(fitnessfcn,nvars,...)

[x,fval,exitflag,output,population] = ga(fitnessfcn,nvars,...)

[x,fval,exitflag,output,population,scores] = ga(fitnessfcn,

nvars,...)

Description

x = ga(fitnessfcn,nvars) finds a local unconstrained minimum, x, to the objective
function, fitnessfcn. nvars is the dimension (number of design variables) of
fitnessfcn.

x = ga(fitnessfcn,nvars,A,b) finds a local minimum x to fitnessfcn, subject to
the linear inequalities A*x ≤ b. ga evaluates the matrix product A*x as if x is transposed
(A*x').

x = ga(fitnessfcn,nvars,A,b,Aeq,beq) finds a local minimum x to fitnessfcn,
subject to the linear equalities Aeq*x = beq as well as A*x ≤ b. (Set A=[] and b=[] if
no linear inequalities exist.) ga evaluates the matrix product Aeq*x as if x is transposed
(Aeq*x').
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x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB) defines a set of lower and upper
bounds on the design variables, x, so that a solution is found in the range LB ≤ x ≤ UB.
(Set Aeq=[] and beq=[] if no linear equalities exist.)

x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon) subjects the
minimization to the constraints defined in nonlcon. The function nonlcon accepts x
and returns vectors C and Ceq, representing the nonlinear inequalities and equalities
respectively. ga minimizes the fitnessfcn such that C(x) ≤ 0 and Ceq(x) = 0. (Set
LB=[] and UB=[] if no bounds exist.)

x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options) minimizes
with the default optimization parameters replaced by values in the structure options,
which can be created using the gaoptimset function. (Set nonlcon=[] if no nonlinear
constraints exist.)

x = ga(fitnessfcn,nvars,A,b,[],[],LB,UB,nonlcon,IntCon) requires that the
variables listed in IntCon take integer values.

Note: When there are integer constraints, ga does not accept linear or nonlinear equality
constraints, only inequality constraints.

x = ga(fitnessfcn,nvars,A,b,[],[],LB,UB,nonlcon,IntCon,options)

minimizes with integer constraints and with the default optimization parameters
replaced by values in the options structure.

x = ga(problem) finds the minimum for problem, where problem is a structure.

[x,fval] = ga(fitnessfcn,nvars,...) returns fval, the value of the fitness
function at x.

[x,fval,exitflag] = ga(fitnessfcn,nvars,...) returns exitflag, an integer
identifying the reason the algorithm terminated.

[x,fval,exitflag,output] = ga(fitnessfcn,nvars,...) returns output, a
structure that contains output from each generation and other information about the
performance of the algorithm.

[x,fval,exitflag,output,population] = ga(fitnessfcn,nvars,...) returns
the matrix, population, whose rows are the final population.
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[x,fval,exitflag,output,population,scores] = ga(fitnessfcn,

nvars,...) returns scores the scores of the final population.

Input Arguments

fitnessfcn

Handle to the fitness function. The fitness function should accept a row vector of length
nvars and return a scalar value.

When the 'Vectorized' option is 'on', fitnessfcn should accept a pop-by-nvars
matrix, where pop is the current population size. In this case fitnessfcn should return
a vector the same length as pop containing the fitness function values. fitnessfcn
should not assume any particular size for pop, since ga can pass a single member of a
population even in a vectorized calculation.

nvars

Positive integer representing the number of variables in the problem.

A

Matrix for linear inequality constraints of the form
A*x ≤ b.

If the problem has m linear inequality constraints and nvars variables, then

• A is a matrix of size m-by-nvars.
• b is a vector of length m.

ga evaluates the matrix product A*x as if x is transposed (A*x').

Note: ga does not enforce linear constraints to be satisfied when the PopulationType
option is 'bitString' or 'custom'.

b

Vector for linear inequality constraints of the form
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A*x ≤ b.

If the problem has m linear inequality constraints and nvars variables, then

• A is a matrix of size m-by-nvars.
• b is a vector of length m.

Aeq

Matrix for linear equality constraints of the form
Aeq*x = beq.

If the problem has m linear equality constraints and nvars variables, then

• Aeq is a matrix of size m-by-nvars.
• beq is a vector of length m.

ga evaluates the matrix product Aeq*x as if x is transposed (Aeq*x').

Note: ga does not enforce linear constraints to be satisfied when the PopulationType
option is 'bitString' or 'custom'.

beq

Vector for linear equality constraints of the form
Aeq*x = beq.

If the problem has m linear equality constraints and nvars variables, then

• Aeq is a matrix of size m-by-nvars.
• beq is a vector of length m.

LB

Vector of lower bounds. ga enforces that iterations stay above LB. Set LB(i) = –Inf if
x(i)is unbounded below.

Note: ga does not enforce bounds to be satisfied when the PopulationType option is
'bitString' or 'custom'.
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UB

Vector of upper bounds. ga enforces that iterations stay below UB. Set UB(i) = Inf if
x(i) is unbounded above.

nonlcon

Function handle that returns two outputs:

[c,ceq] = nonlcon(x)

ga attempts to achieve c ≤ 0 and ceq = 0. c and ceq are row vectors when there are
multiple constraints. Set unused outputs to [].

You can write nonlcon as a function handle to a file, such as

nonlcon = @constraintfile

where constraintfile.m is a file on your MATLAB path.

To learn how to use vectorized constraints, see “Vectorized Constraints” on page 2-7.

Note: ga does not enforce nonlinear constraints to be satisfied when the
PopulationType option is set to 'bitString' or 'custom'.

If IntCon is not empty, the second output of nonlcon (ceq) must be empty ([]).

For information on how ga uses nonlcon, see “Nonlinear Constraint Solver Algorithms”
on page 5-49.

options

Structure containing optimization options. Create options using gaoptimset, or by
exporting options from the Optimization app as described in “Importing and Exporting
Your Work” in the Optimization Toolbox documentation. Values in {} denote the default
value. {}* means the default when there are linear constraints, and for MutationFcn
also when there are bounds. You can also view the optimization parameters and defaults
by typing gaoptimset at the command line. I* indicates that ga ignores or overwrites
the option for mixed integer optimization problems.
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Option Description Values

CreationFcn I* Handle to the function that creates the
initial population. See “Population Options”
on page 10-32.

{@gacreationuniform} |
{@gacreationlinearfeasible}*

| Custom creation function
CrossoverFcn I* Handle to the function that the

algorithm uses to create crossover children.
See “Crossover Options” on page 10-42.

{@crossoverscattered}

for ga,
{@crossoverintermediate}*

for gamultiobj |
@crossoverheuristic |
@crossoversinglepoint

| @crossovertwopoint |
@crossoverarithmetic |
Custom crossover function

CrossoverFraction The fraction of the population at the next
generation, not including elite children,
that is created by the crossover function

Positive scalar | {0.8}

Display Level of display 'off' | 'iter' |
'diagnose' | {'final'}

DistanceMeasureFcn I* Handle to the function that computes
distance measure of individuals, computed
in decision variable or design space
(genotype) or in function space (phenotype),
for gamultiobj only

{@distancecrowding,'phenotype'}

EliteCount Positive integer specifying how many
individuals in the current generation
are guaranteed to survive to the next
generation. Not used in gamultiobj.

Positive integer |
{ceil(0.05*PopulationSize)}

| {0.05*(default
PopulationSize)} for
mixed-integer problems

FitnessLimit Scalar. If the fitness function attains the
value of FitnessLimit, the algorithm
halts.

Scalar | {-Inf}

FitnessScalingFcn Handle to the function that scales the
values of the fitness function

Option unavailable for gamultiobj

{@fitscalingrank} |
@fitscalingshiftlinear

| @fitscalingprop |
@fitscalingtop | Custom
fitness scaling function
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Option Description Values

Generations Positive integer specifying the maximum
number of iterations before the algorithm
halts

Positive integer
|{100*numberOfVariables}
for ga,
{200*numberOfVariables}

for gamultiobj
HybridFcn I* Handle to a function that continues the

optimization after ga terminates

or

Cell array specifying the hybrid function
and its options structure

For gamultiobj, the only hybrid function
is @fgoalattain

Function handle |
@fminsearch |

@patternsearch |

@fminunc | @fmincon |

{[]}

or

1-by-2 cell array
| {@solver,
hybridoptions}, where
solver = fminsearch,
patternsearch, fminunc,
or fmincon {[]}

InitialPenalty I* Initial value of penalty parameter Positive scalar | {10}
InitialPopulation Initial population used to seed the genetic

algorithm; can be partial — see “Population
Options” on page 10-32

Matrix | {[]}

InitialScores I* Initial scores used to determine fitness;
can be partial

Column vector | {[]}

MigrationDirection Direction of migration — see “Migration
Options” on page 10-46

'both' | {'forward'}

MigrationFraction Scalar between 0 and 1 specifying
the fraction of individuals in each
subpopulation that migrates to a different
subpopulation — see “Migration Options”
on page 10-46

Scalar | {0.2}
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Option Description Values

MigrationInterval Positive integer specifying the number
of generations that take place between
migrations of individuals between
subpopulations — see “Migration Options”
on page 10-46

Positive integer | {20}

MutationFcn I* Handle to the function that produces
mutation children. See “Mutation Options”
on page 10-40.

{@mutationgaussian}

for ga,
{@mutationadaptfeasible}*

for gamultiobj |
@mutationuniform |
Custom mutation function

NonlinConAlgorithm Nonlinear constraint algorithm. See
“Nonlinear Constraint Solver Algorithms”
on page 5-49.

Option unchangeable for gamultiobj

{'auglag'} for ga,
{'penalty'} for
gamultiobj

OutputFcns Functions that ga calls at each iteration.
See “Output Function Options” on page
10-50.

Function handle or cell
array of function handles |
{[]}

ParetoFraction I* Scalar between 0 and 1 specifying
the fraction of individuals to keep on
the first Pareto front while the solver
selects individuals from higher fronts, for
gamultiobj only

Scalar | {0.35}

PenaltyFactor I* Penalty update parameter Positive scalar | {100}
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Option Description Values

PlotFcns Array of handles to functions that plot
data computed by the algorithm. See “Plot
Options” on page 10-29.

{[]}  | @gaplotbestf
| @gaplotbestindiv

| @gaplotdistance |

@gaplotexpectation

| @gaplotgenealogy

| @gaplotmaxconstr

| @gaplotrange |

@gaplotselection |

@gaplotscorediversity

| @gaplotscores |

@gaplotstopping |
Custom plot function

For gamultiobj there
are additional choices:
@gaplotpareto |

@gaplotparetodistance

| @gaplotrankhist |

@gaplotspread

PlotInterval Positive integer specifying the number of
generations between consecutive calls to
the plot functions

Positive integer | {1}

PopInitRange Matrix or vector specifying the range of
the individuals in the initial population.
Applies to gacreationuniform creation
function. ga shifts and scales the default
initial range to match any finite bounds.

Matrix or vector |
{[-10;10]} for
unbounded components,
{[-1e4+1;1e4+1]} for
unbounded components
of integer-constrained
problems, {[lb;ub]} for
bounded components, with
the default range modified
to match one-sided bounds.

PopulationSize Size of the population Positive integer | {50}
when numberOfVariables
<= 5, {200} otherwise |
{min(max(10*nvars,40),100)}

for mixed-integer problems
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Option Description Values

PopulationType String describing the data type of the
population — must be 'doubleVector'
for mixed integer problems

'bitstring' | 'custom'
| {'doubleVector'}

ga ignores all constraints
when PopulationType
is set to 'bitString' or
'custom'. See “Population
Options” on page 10-32.

SelectionFcn I* Handle to the function that selects
parents of crossover and mutation children

Option unchangeable for gamultiobj

{@selectionstochunif}

for ga,
{@selectiontournament}

for gamultiobj |
@selectionremainder

| @selectionuniform |
@selectionroulette |
Custom selection function

StallGenLimit Positive integer. The algorithm stops if
the average relative change in the best
fitness function value over StallGenLimit
generations is less than or equal to TolFun.
If StallTest is 'geometricWeighted',
then the algorithm stops if the weighted
average relative change is less than or
equal to TolFun.

Positive integer | {50} for
ga, {100} for gamultiobj

StallTest String describing the stopping test. 'geometricWeighted' |
{'averageChange'}

StallTimeLimit Positive scalar. The algorithm stops if there
is no improvement in the objective function
for StallTimeLimit seconds, as measured
by tic and toc.

Option unavailable for gamultiobj

Positive scalar | {Inf}
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Option Description Values

TimeLimit Positive scalar. The algorithm stops after
running after TimeLimit seconds, as
measured by tic and toc. This limit is
enforced after each iteration, so ga can
exceed the limit when an iteration takes
substantial time.

Positive scalar | {Inf}

TolCon Positive scalar. TolCon is used
to determine the feasibility with
respect to nonlinear constraints. Also,
max(sqrt(eps),TolCon) determines
feasibility with respect to linear
constraints.

Positive scalar | {1e-3}

TolFun Positive scalar. The algorithm stops if
the average relative change in the best
fitness function value over StallGenLimit
generations is less than or equal to TolFun.
If StallTest is 'geometricWeighted',
then the algorithm stops if the weighted
average relative change is less than or
equal to TolFun.

Positive scalar | {1e-6} for
ga, {1e-4} for gamultiobj

UseParallel Compute fitness and nonlinear constraint
functions in parallel, see “Vectorize
and Parallel Options (User Function
Evaluation)” on page 10-53 and “How to
Use Parallel Processing” on page 9-12.

true | {false}

Vectorized Specifies whether functions are vectorized,
see “Vectorize and Parallel Options (User
Function Evaluation)” on page 10-53 and
“Vectorize the Fitness Function” on page
5-110.

'on' | {'off'}

IntCon

Vector of positive integers taking values from 1 to nvars. Each value in IntCon
represents an x component that is integer-valued.
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Note: When IntCon is nonempty, Aeq and beq must be empty ([]), and nonlcon must
return empty for ceq. For more information on integer programming, see “Mixed Integer
Optimization” on page 5-27.

problem

Structure containing the following fields:

fitnessfcn Fitness function
nvars Number of design variables
Aineq A matrix for linear inequality constraints
Bineq b vector for linear inequality constraints
Aeq Aeq matrix for linear equality constraints
Beq beq vector for linear equality constraints
lb Lower bound on x
ub Upper bound on x
nonlcon Nonlinear constraint function
rngstate Optional field to reset the state of the random number

generator
intcon Index vector of integer variables
solver 'ga'

options Options structure created using gaoptimset or the
Optimization app

Create problem by exporting a problem from the Optimization app, as described in
“Importing and Exporting Your Work” in the Optimization Toolbox documentation.

Output Arguments

x

Best point that ga located during its iterations.
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fval

Fitness function evaluated at x.

exitflag

Integer giving the reason ga stopped iterating:

Exit Flag Meaning

Without nonlinear constraints — Average cumulative change in
value of the fitness function over StallGenLimit generations is less
than TolFun, and the constraint violation is less than TolCon.

1

With nonlinear constraints — Magnitude of the complementarity
measure (see “Complementarity Measure” on page 11-22) is less than
sqrt(TolCon), the subproblem is solved using a tolerance less than
TolFun, and the constraint violation is less than TolCon.

2 Fitness limit reached and the constraint violation is less than TolCon.
3 Value of the fitness function did not change in StallGenLimit

generations and the constraint violation is less than TolCon.
4 Magnitude of step smaller than machine precision and the constraint

violation is less than TolCon.
5 Minimum fitness limit FitnessLimit reached and the constraint

violation is less than TolCon.
0 Maximum number of generations Generations exceeded.
-1 Optimization terminated by an output function or plot function.
-2 No feasible point found.
-4 Stall time limit StallTimeLimit exceeded.
-5 Time limit TimeLimit exceeded.

When there are integer constraints, ga uses the penalty fitness value instead of the
fitness value for stopping criteria.

output

Structure containing output from each generation and other information about algorithm
performance. The output structure contains the following fields:

• problemtype — String describing the type of problem, one of:
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• 'unconstrained'

• 'boundconstraints'

• 'linearconstraints'

• 'nonlinearconstr'

• 'integerconstraints'

• rngstate — State of the MATLAB random number generator, just before the
algorithm started. You can use the values in rngstate to reproduce the output of ga.
See “Reproduce Results” on page 5-68.

• generations — Number of generations computed.
• funccount — Number of evaluations of the fitness function.
• message — Reason the algorithm terminated.
• maxconstraint — Maximum constraint violation, if any.

population

Matrix whose rows contain the members of the final population.

scores

Column vector of the fitness values (scores for integerconstraints problems) of the
final population.

Examples
Given the following inequality constraints and lower bounds
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use this code to find the minimum of the lincontest6 function, which is provided in
your software:

A = [1 1; -1 2; 2 1];

b = [2; 2; 3];

lb = zeros(2,1);
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[x,fval,exitflag] = ga(@lincontest6,... 

    2,A,b,[],[],lb)

Optimization terminated: average change in

the fitness value less than options.TolFun.

x =

    0.6700    1.3310

fval =

   -8.2218

exitflag =

     1

Optimize a function where some variables must be integers:

fun = @(x) (x(1) - 0.2)^2 + ...

    (x(2) - 1.7)^2 + (x(3) - 5.1)^2;

x = ga(fun,3,[],[],[],[],[],[],[], ...

   [2 3]) % variables 2 and 3 are integers

Optimization terminated: average change

in the penalty fitness value less

than options.TolFun and constraint violation

is less than options.TolCon.

x =

    0.2000    2.0000    5.0000

Alternatives

For problems without integer constraints, consider using patternsearch instead of ga.

More About

Complementarity Measure

In the nonlinear constraint solver, the complementarity measure is the norm of the
vector whose elements are ciλi, where ci is the nonlinear inequality constraint violation,
and λi is the corresponding Lagrange multiplier.
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Tips

• To write a function with additional parameters to the independent variables that
can be called by ga, see “Passing Extra Parameters” in the Optimization Toolbox
documentation.

• For problems that use the population type Double Vector (the default), ga does
not accept functions whose inputs are of type complex. To solve problems involving
complex data, write your functions so that they accept real vectors, by separating the
real and imaginary parts.

Algorithms

For a description of the genetic algorithm, see “How the Genetic Algorithm Works” on
page 5-18.

For a description of the mixed integer programming algorithm, see “Integer ga
Algorithm” on page 5-35.

For a description of the nonlinear constraint algorithm, see “Nonlinear Constraint Solver
Algorithms” on page 5-49.
• “Genetic Algorithm”
• “Getting Started with Global Optimization Toolbox”
• “Optimization Problem Setup”
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See Also
gamultiobj | gaoptimset | particleswarm | patternsearch
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gamultiobj
Find minima of multiple functions using genetic algorithm

Syntax

X = gamultiobj(FITNESSFCN,NVARS)

X = gamultiobj(FITNESSFCN,NVARS,A,b)

X = gamultiobj(FITNESSFCN,NVARS,A,b,Aeq,beq)

X = gamultiobj(FITNESSFCN,NVARS,A,b,Aeq,beq,LB,UB)

X = gamultiobj(FITNESSFCN,NVARS,A,b,Aeq,beq,LB,UB,nonlcon)

X = gamultiobj(FITNESSFCN,NVARS,A,b,Aeq,beq,LB,UB,options)

X = gamultiobj(FITNESSFCN,NVARS,A,b,Aeq,beq,LB,UB,nonlcon,options)

X = gamultiobj(problem)

[X,FVAL] = gamultiobj(FITNESSFCN,NVARS, ...)

[X,FVAL,EXITFLAG] = gamultiobj(FITNESSFCN,NVARS, ...)

[X,FVAL,EXITFLAG,OUTPUT] = gamultiobj(FITNESSFCN,NVARS, ...)

[X,FVAL,EXITFLAG,OUTPUT,POPULATION] = gamultiobj(FITNESSFCN, ...)

[X,FVAL,EXITFLAG,OUTPUT,POPULATION,SCORE] =

gamultiobj(FITNESSFCN, ...)

Description

gamultiobj implements the genetic algorithm at the command line to minimize a
multicomponent objective function.

X = gamultiobj(FITNESSFCN,NVARS) finds a local Pareto set X of the objective
functions defined in FITNESSFCN. For details on writing FITNESSFCN, see “Compute
Objective Functions” on page 2-2. NVARS is the dimension of the optimization problem
(number of decision variables). X is a matrix with NVARS columns. The number of rows in
X is the same as the number of Pareto solutions. All solutions in a Pareto set are equally
optimal; it is up to the designer to select a solution in the Pareto set depending on the
application.

X = gamultiobj(FITNESSFCN,NVARS,A,b) finds a local Pareto set X of the
objective functions defined in FITNESSFCN, subject to the linear inequalities A x b* £ ,
see “Linear Inequality Constraints”. Linear constraints are supported only for the
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default PopulationType option ('doubleVector'). Other population types, e.g.,
'bitString' and 'custom', are not supported.

X = gamultiobj(FITNESSFCN,NVARS,A,b,Aeq,beq) finds a local Pareto set X of the
objective functions defined in FITNESSFCN, subject to the linear equalities Aeq x beq* =

as well as the linear inequalities A x b* £ , see “Linear Equality Constraints”. (Set
A=[] and b=[] if no inequalities exist.) Linear constraints are supported only for the
default PopulationType option ('doubleVector'). Other population types, e.g.,
'bitString' and 'custom', are not supported.

X = gamultiobj(FITNESSFCN,NVARS,A,b,Aeq,beq,LB,UB) defines a set of lower
and upper bounds on the design variables X so that a local Pareto set is found in the
range LB x UB£ £ , see “Bound Constraints”. Use empty matrices for LB and UB if no
bounds exist. Bound constraints are supported only for the default PopulationType
option ('doubleVector'). Other population types, e.g., 'bitString' and 'custom',
are not supported.

X = gamultiobj(FITNESSFCN,NVARS,A,b,Aeq,beq,LB,UB,nonlcon) subjects the
minimization to the constraints defined in nonlcon. The function nonlcon accepts x
and returns vectors C and Ceq, representing the nonlinear inequalities and equalities
respectively. gamultiobj minimizes the fitnessfcn such that C(x) ≤ 0 and
Ceq(x) = 0. (Set LB=[] and UB=[] if no bounds exist.)

X = gamultiobj(FITNESSFCN,NVARS,A,b,Aeq,beq,LB,UB,options) or X =
gamultiobj(FITNESSFCN,NVARS,A,b,Aeq,beq,LB,UB,nonlcon,options) finds a
Pareto set X with the default optimization parameters replaced by values in the structure
options. options can be created with the gaoptimset function.

X = gamultiobj(problem) finds the Pareto set for problem, where problem is a
structure containing the following fields:

fitnessfcn Fitness functions
nvars Number of design variables
Aineq A matrix for linear inequality constraints
bineq b vector for linear inequality constraints
Aeq Aeq matrix for linear equality constraints
beq beq vector for linear equality constraints
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lb Lower bound on x
ub Upper bound on x
nonlcon Nonlinear constraint function (optional)
solver 'gamultiobj'

rngstate Optional field to reset the state of the random number
generator

options Options structure created using gaoptimset

Create the structure problem by exporting a problem from Optimization app, as
described in “Importing and Exporting Your Work” in the Optimization Toolbox
documentation.

[X,FVAL] = gamultiobj(FITNESSFCN,NVARS, ...) returns a matrix FVAL, the
value of all the objective functions defined in FITNESSFCN at all the solutions in X. FVAL
has numberOfObjectives columns and same number of rows as does X.

[X,FVAL,EXITFLAG] = gamultiobj(FITNESSFCN,NVARS, ...) returns EXITFLAG,
which describes the exit condition of gamultiobj. Possible values of EXITFLAG and the
corresponding exit conditions are listed in this table.

EXITFLAG
Value

Exit Condition

1 Average change in value of the spread over options.StallGenLimit
generations less than options.TolFun, and the final spread is less
than the average spread over the past options.StallGenLimit
generations

0 Maximum number of generations exceeded
-1 Optimization terminated by an output function or plot function
-2 No feasible point found
-5 Time limit exceeded

[X,FVAL,EXITFLAG,OUTPUT] = gamultiobj(FITNESSFCN,NVARS, ...) returns a
structure OUTPUT with the following fields:

OUTPUT Field Meaning

problemtype Type of problem:
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OUTPUT Field Meaning

• 'unconstrained' — No constraints
• 'boundconstraints' — Only bound constraints
• 'linearconstraints' — Linear constraints, with or

without bound constraints
rngstate State of the MATLAB random number generator, just before

the algorithm started. You can use the values in rngstate to
reproduce the output of ga. See “Reproduce Results” on page
5-68.

generations Total number of generations, excluding HybridFcn iterations
funccount Total number of function evaluations
message gamultiobj termination message
averagedistance Average “distance,” which by default is the standard deviation

of the norm of the difference between Pareto front members and
their mean

spread Combination of the “distance,” and a measure of the movement
of the points on the Pareto front between the final two iterations

maxconstraint Maximum constraint violation at the final Pareto set

[X,FVAL,EXITFLAG,OUTPUT,POPULATION] = gamultiobj(FITNESSFCN, ...)

returns the final POPULATION at termination.

[X,FVAL,EXITFLAG,OUTPUT,POPULATION,SCORE] =

gamultiobj(FITNESSFCN, ...) returns the SCORE of the final POPULATION.

Examples

This example optimizes two objectives defined by Schaffer's second function, which has
two objectives and a scalar input argument. The Pareto front is disconnected. Define this
function in a file:

function y = schaffer2(x) % y has two columns

% Initialize y for two objectives and for all x

y = zeros(length(x),2); % ready for vectorization
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% Evaluate first objective. 

% This objective is piecewise continuous.

for i = 1:length(x)

    if x(i) <= 1

        y(i,1) = -x(i);

    elseif x(i) <=3 

        y(i,1) = x(i) -2; 

    elseif x(i) <=4 

        y(i,1) = 4 - x(i);

    else 

        y(i,1) = x(i) - 4;

    end

end

% Evaluate second objective

y(:,2) = (x -5).^2;

First, plot the two objectives:

x = -1:0.1:8;

y = schaffer2(x);

plot(x,y(:,1),'.r'); hold on

plot(x,y(:,2),'.b');

The two component functions compete in the range [1, 3] and [4, 5]. But the Pareto-
optimal front consists of only two disconnected regions: [1, 2] and [4, 5]. This is because
the region [2, 3] is inferior to [1, 2].

Next, impose a bound constraint on x, - £ £5 10x  setting

lb = -5;

ub = 10;

The best way to view the results of the genetic algorithm is to visualize the Pareto front
directly using the @gaplotpareto option. To optimize Schaffer's function, a larger
population size than the default (15) is needed, because of the disconnected front. This
example uses 60. Set the optimization options as:

options = gaoptimset('PopulationSize',60,'PlotFcns',@gaplotpareto);

Now call gamultiobj, specifying one independent variable and only the bound
constraints:

[x,f,exitflag] = gamultiobj(@schaffer2,1,[],[],[],[],...
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    lb,ub,options);

Optimization terminated: average change in the spread of

Pareto solutions less than options.TolFun.

exitflag

exitflag = 1

The vectors x, f(:,1), and f(:,2) respectively contain the Pareto set and both
objectives evaluated on the Pareto set.

Examples Included in the Toolbox

The gamultiobjfitness example solves a simple problem with one decision variable and
two objectives.

The gamultiobjoptionsdemo example shows how to set options for multiobjective
optimization.

More About

Algorithms

gamultiobj uses a controlled elitist genetic algorithm (a variant of NSGA-II [1]).
An elitist GA always favors individuals with better fitness value (rank). A controlled
elitist GA also favors individuals that can help increase the diversity of the population
even if they have a lower fitness value. It is important to maintain the diversity of
population for convergence to an optimal Pareto front. Diversity is maintained by
controlling the elite members of the population as the algorithm progresses. Two options,
ParetoFraction and DistanceFcn, control the elitism. ParetoFraction limits
the number of individuals on the Pareto front (elite members). The distance function,
selected by DistanceFcn, helps to maintain diversity on a front by favoring individuals
that are relatively far away on the front. The algorithm stops if the spread, a measure of
the movement of the Pareto front, is small.

References

[1] Deb, Kalyanmoy. Multi-Objective Optimization Using Evolutionary Algorithms. John
Wiley & Sons, 2001.

examples/performing-a-multiobjective-optimization-using-the-genetic-algorithm.html
examples/multiobjective-genetic-algorithm-options.html
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See Also
ga | gaoptimget | gaoptimset | patternsearch | Special Characters | rand |
randn
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gaoptimget
Obtain values of genetic algorithm options structure

Syntax

val = gaoptimget(options, 'name')

val = gaoptimget(options, 'name', default)

Description

val = gaoptimget(options, 'name') returns the value of the parameter name from
the genetic algorithm options structure options. gaoptimget(options, 'name')
returns an empty matrix [] if the value of name is not specified in options. It is only
necessary to type enough leading characters of name to uniquely identify it. gaoptimget
ignores case in parameter names.

val = gaoptimget(options, 'name', default) returns the 'name' parameter,
but will return the default value if the name parameter is not specified (or is []) in
options.

More About
• “Genetic Algorithm Options” on page 10-28

See Also
ga | gamultiobj | gaoptimset
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gaoptimset
Create genetic algorithm options structure

Syntax

gaoptimset

options = gaoptimset

options = gaoptimset(@ga)

options = gaoptimset(@gamultiobj)

options = gaoptimset('param1',value1,'param2',value2,...)

options = gaoptimset(oldopts,'param1',value1,...)

options = gaoptimset(oldopts,newopts)

Description

gaoptimset with no input or output arguments displays a complete list of parameters
with their valid values.

options = gaoptimset (with no input arguments) creates a structure called options
that contains the options, or parameters, for the genetic algorithm and sets parameters to
[], indicating default values will be used.

options = gaoptimset(@ga) creates a structure called options that contains the
default options for the genetic algorithm.

options = gaoptimset(@gamultiobj) creates a structure called options that
contains the default options for gamultiobj.

options = gaoptimset('param1',value1,'param2',value2,...) creates a
structure called options and sets the value of 'param1' to value1, 'param2' to
value2, and so on. Any unspecified parameters are set to their default values. It is
sufficient to type only enough leading characters to define the parameter name uniquely.
Case is ignored for parameter names.

options = gaoptimset(oldopts,'param1',value1,...) creates a copy of
oldopts, modifying the specified parameters with the specified values.
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options = gaoptimset(oldopts,newopts) combines an existing options structure,
oldopts, with a new options structure, newopts. Any parameters in newopts with
nonempty values overwrite the corresponding old parameters in oldopts.

Options

The following table lists the options you can set with gaoptimset. See “Genetic
Algorithm Options” on page 10-28 for a complete description of these options and their
values. Values in {} denote the default value. {}* means the default when there are
linear constraints, and for MutationFcn also when there are bounds. You can also view
the optimization parameters and defaults by typing gaoptimset at the command line.
I* indicates that ga ignores or overwrites the option for mixed integer optimization
problems.

Option Description Values

CreationFcn I* Handle to the function that creates the
initial population. See “Population Options”
on page 10-32.

{@gacreationuniform} |
{@gacreationlinearfeasible}*

| Custom creation function
CrossoverFcn I* Handle to the function that the

algorithm uses to create crossover children.
See “Crossover Options” on page 10-42.

{@crossoverscattered}

for ga,
{@crossoverintermediate}*

for gamultiobj |
@crossoverheuristic |
@crossoversinglepoint

| @crossovertwopoint |
@crossoverarithmetic |
Custom crossover function

CrossoverFraction The fraction of the population at the next
generation, not including elite children,
that is created by the crossover function

Positive scalar | {0.8}

Display Level of display 'off' | 'iter' |
'diagnose' | {'final'}

DistanceMeasureFcn I* Handle to the function that computes
distance measure of individuals, computed
in decision variable or design space
(genotype) or in function space (phenotype),
for gamultiobj only

{@distancecrowding,'phenotype'}
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Option Description Values

EliteCount Positive integer specifying how many
individuals in the current generation
are guaranteed to survive to the next
generation. Not used in gamultiobj.

Positive integer |
{ceil(0.05*PopulationSize)}

| {0.05*(default
PopulationSize)} for
mixed-integer problems

FitnessLimit Scalar. If the fitness function attains the
value of FitnessLimit, the algorithm
halts.

Scalar | {-Inf}

FitnessScalingFcn Handle to the function that scales the
values of the fitness function

Option unavailable for gamultiobj

{@fitscalingrank} |
@fitscalingshiftlinear

| @fitscalingprop |
@fitscalingtop | Custom
fitness scaling function

Generations Positive integer specifying the maximum
number of iterations before the algorithm
halts

Positive integer
|{100*numberOfVariables}
for ga,
{200*numberOfVariables}

for gamultiobj
HybridFcn I* Handle to a function that continues the

optimization after ga terminates

or

Cell array specifying the hybrid function
and its options structure

For gamultiobj, the only hybrid function
is @fgoalattain

Function handle |
@fminsearch |

@patternsearch |

@fminunc | @fmincon |

{[]}

or

1-by-2 cell array
| {@solver,
hybridoptions}, where
solver = fminsearch,
patternsearch, fminunc,
or fmincon {[]}

InitialPenalty I* Initial value of penalty parameter Positive scalar | {10}
InitialPopulation Initial population used to seed the genetic

algorithm; can be partial — see “Population
Options” on page 10-32

Matrix | {[]}
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Option Description Values

InitialScores I* Initial scores used to determine fitness;
can be partial

Column vector | {[]}

MigrationDirection Direction of migration — see “Migration
Options” on page 10-46

'both' | {'forward'}

MigrationFraction Scalar between 0 and 1 specifying
the fraction of individuals in each
subpopulation that migrates to a different
subpopulation — see “Migration Options”
on page 10-46

Scalar | {0.2}

MigrationInterval Positive integer specifying the number
of generations that take place between
migrations of individuals between
subpopulations — see “Migration Options”
on page 10-46

Positive integer | {20}

MutationFcn I* Handle to the function that produces
mutation children. See “Mutation Options”
on page 10-40.

{@mutationgaussian}

for ga,
{@mutationadaptfeasible}*

for gamultiobj |
@mutationuniform |
Custom mutation function

NonlinConAlgorithm Nonlinear constraint algorithm. See
“Nonlinear Constraint Solver Algorithms”
on page 5-49.

Option unchangeable for gamultiobj

{'auglag'} for ga,
{'penalty'} for
gamultiobj

OutputFcns Functions that ga calls at each iteration.
See “Output Function Options” on page
10-50.

Function handle or cell
array of function handles |
{[]}

ParetoFraction I* Scalar between 0 and 1 specifying
the fraction of individuals to keep on
the first Pareto front while the solver
selects individuals from higher fronts, for
gamultiobj only

Scalar | {0.35}

PenaltyFactor I* Penalty update parameter Positive scalar | {100}
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Option Description Values

PlotFcns Array of handles to functions that plot
data computed by the algorithm. See “Plot
Options” on page 10-29.

{[]}  | @gaplotbestf
| @gaplotbestindiv

| @gaplotdistance |

@gaplotexpectation

| @gaplotgenealogy

| @gaplotmaxconstr

| @gaplotrange |

@gaplotselection |

@gaplotscorediversity

| @gaplotscores |

@gaplotstopping |
Custom plot function

For gamultiobj there
are additional choices:
@gaplotpareto |

@gaplotparetodistance

| @gaplotrankhist |

@gaplotspread

PlotInterval Positive integer specifying the number of
generations between consecutive calls to
the plot functions

Positive integer | {1}

PopInitRange Matrix or vector specifying the range of
the individuals in the initial population.
Applies to gacreationuniform creation
function. ga shifts and scales the default
initial range to match any finite bounds.

Matrix or vector |
{[-10;10]} for
unbounded components,
{[-1e4+1;1e4+1]} for
unbounded components
of integer-constrained
problems, {[lb;ub]} for
bounded components, with
the default range modified
to match one-sided bounds.

PopulationSize Size of the population Positive integer | {50}
when numberOfVariables
<= 5, {200} otherwise |
{min(max(10*nvars,40),100)}

for mixed-integer problems
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Option Description Values

PopulationType String describing the data type of the
population — must be 'doubleVector'
for mixed integer problems

'bitstring' | 'custom'
| {'doubleVector'}

ga ignores all constraints
when PopulationType
is set to 'bitString' or
'custom'. See “Population
Options” on page 10-32.

SelectionFcn I* Handle to the function that selects
parents of crossover and mutation children

Option unchangeable for gamultiobj

{@selectionstochunif}

for ga,
{@selectiontournament}

for gamultiobj |
@selectionremainder

| @selectionuniform |
@selectionroulette |
Custom selection function

StallGenLimit Positive integer. The algorithm stops if
the average relative change in the best
fitness function value over StallGenLimit
generations is less than or equal to TolFun.
If StallTest is 'geometricWeighted',
then the algorithm stops if the weighted
average relative change is less than or
equal to TolFun.

Positive integer | {50} for
ga, {100} for gamultiobj

StallTest String describing the stopping test. 'geometricWeighted' |
{'averageChange'}

StallTimeLimit Positive scalar. The algorithm stops if there
is no improvement in the objective function
for StallTimeLimit seconds, as measured
by tic and toc.

Option unavailable for gamultiobj

Positive scalar | {Inf}
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Option Description Values

TimeLimit Positive scalar. The algorithm stops after
running after TimeLimit seconds, as
measured by tic and toc. This limit is
enforced after each iteration, so ga can
exceed the limit when an iteration takes
substantial time.

Positive scalar | {Inf}

TolCon Positive scalar. TolCon is used
to determine the feasibility with
respect to nonlinear constraints. Also,
max(sqrt(eps),TolCon) determines
feasibility with respect to linear
constraints.

Positive scalar | {1e-3}

TolFun Positive scalar. The algorithm stops if
the average relative change in the best
fitness function value over StallGenLimit
generations is less than or equal to TolFun.
If StallTest is 'geometricWeighted',
then the algorithm stops if the weighted
average relative change is less than or
equal to TolFun.

Positive scalar | {1e-6} for
ga, {1e-4} for gamultiobj

UseParallel Compute fitness and nonlinear constraint
functions in parallel, see “Vectorize
and Parallel Options (User Function
Evaluation)” on page 10-53 and “How to
Use Parallel Processing” on page 9-12.

true | {false}

Vectorized Specifies whether functions are vectorized,
see “Vectorize and Parallel Options (User
Function Evaluation)” on page 10-53 and
“Vectorize the Fitness Function” on page
5-110.

'on' | {'off'}

More About
• “Genetic Algorithm Options” on page 10-28
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See Also
ga | gamultiobj | gaoptimget
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GlobalOptimSolution class

Optimization solution

Description

Information on a local minimum, including location, objective function value, and start
point or points that lead to the minimum.

GlobalSearch and MultiStart generate a vector of GlobalOptimSolution objects.
The vector is ordered by objective function value, from lowest (best) to highest (worst).

Construction

When you run them, GlobalSearch and MultiStart create GlobalOptimSolution
objects as output.

Properties

Exitflag

An integer describing the result of the local solver run.

For the meaning of the exit flag, see the description in the appropriate local solver
function reference page:

• fmincon exitflag
• fminunc exitflag
• lsqcurvefit exitflag
• lsqnonlin exitflag

Fval

Objective function value at the solution.



11 Functions — Alphabetical List

11-42

Output

Output structure returned by the local solver.

X

Solution point, with the same dimensions as the initial point.

X0

Cell array of start points that led to the solution.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

Examples

Use MultiStart to create a vector of GlobalOptimSolution objects:

ms = MultiStart;

sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...

    + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);

problem = createOptimProblem('fmincon','x0',[-1,2],...

    'objective',sixmin,'lb',[-3,-3],'ub',[3,3]);

[xmin,fmin,flag,outpt,allmins] = run(ms,problem,30);

allmins is the vector of GlobalOptimSolution objects:

allmins

allmins = 

  1x30 GlobalOptimSolution

  Properties:

    X

    Fval

    Exitflag

    Output
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    X0

See Also
MultiStart.run | GlobalSearch | MultiStart | GlobalSearch.run

How To
• Class Attributes
• Property Attributes
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GlobalSearch class

Find global minimum

Description

A GlobalSearch object contains properties (options) that affect how the run method
searches for a global minimum, or generates a GlobalOptimSolution object.

Construction

gs = GlobalSearch constructs a new global search optimization solver with its
properties set to the defaults.

gs = GlobalSearch('PropertyName',PropertyValue,...) constructs the object
using options, specified as property name and value pairs.

gs = GlobalSearch(oldgs,'PropertyName',PropertyValue,...) constructs a
copy of the GlobalSearch solver oldgs. The gs object has the named properties altered
with the specified values.

gs = GlobalSearch(ms) constructs gs, a GlobalSearch solver, with common
parameter values from the ms MultiStart solver.

Properties

BasinRadiusFactor

A basin radius decreases after MaxWaitCycle consecutive start points are within the
basin. The basin radius decreases by a factor of 1 – BasinRadiusFactor.

Set BasinRadiusFactor to 0 to disable updates of the basin radius.

Default: 0.2
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Display

Detail level of iterative display. Possible values:

• 'final' — Report summary results after run finishes.
• 'iter' — Report results after the initial fmincon run, after Stage 1, after every 200

start points, and after every run of fmincon, in addition to the final summary.
• 'off' — No display.

Default: 'final'

DistanceThresholdFactor

A multiplier for determining whether a trial point is in an existing basin of attraction.
For details, see “Examine Stage 2 Trial Point to See if fmincon Runs” on page 3-48.

Default: 0.75

MaxTime

Time in seconds for a run. GlobalSearch halts when it sees MaxTime seconds have
passed since the beginning of the run.

Default: Inf

MaxWaitCycle

A positive integer tolerance appearing in several points in the algorithm:

• If the observed penalty function of MaxWaitCycle consecutive trial points
is at least the penalty threshold, then raise the penalty threshold (see
PenaltyThresholdFactor).

• If MaxWaitCycle consecutive trial points are in a basin, then update that basin's
radius (see BasinRadiusFactor).

Default: 20

NumStageOnePoints

Number of start points in Stage 1. For details, see “Obtain Stage 1 Start Point, Run” on
page 3-47.

Default: 200
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NumTrialPoints

Number of potential start points to examine in addition to x0 from the problem
structure. GlobalSearch runs only those potential start points that pass several tests.
For more information, see “GlobalSearch Algorithm” on page 3-46.

Default: 1000

OutputFcns

A function handle or cell array of function handles to output functions. Output functions
run after each local solver call. They also run when the global solver starts and ends.
Write your output functions using the syntax described in “OutputFcns” on page 10-3.
See “GlobalSearch Output Function” on page 3-37.

Default: []

PenaltyThresholdFactor

Determines increase in the penalty threshold. For details, see React to Large Counter
Values.

Default: 0.2

PlotFcns

A function handle or cell array of function handles to plot functions. Plot functions run
after each local solver call. They also run when the global solver starts and ends. Write
your plot functions using the syntax described in “OutputFcns” on page 10-3. There are
two built-in plot functions:

• @gsplotbestf plots the best objective function value.
• @gsplotfunccount plots the number of function evaluations.

See “MultiStart Plot Function” on page 3-41.

Default: []

StartPointsToRun

Directs the solver to exclude certain start points from being run:

• all — Accept all start points.
• bounds — Reject start points that do not satisfy bounds.
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• bounds-ineqs — Reject start points that do not satisfy bounds or inequality
constraints.

GlobalSearch checks the StartPointsToRun property only during Stage 2 of the
GlobalSearch algorithm (the main loop). For more information, see “GlobalSearch
Algorithm” on page 3-46.

Default: 'all'

TolFun

Describes how close two objective function values must be for solvers to consider them
identical for creating the vector of local solutions. Solvers consider two solutions identical
if they are within TolX distance of each other and have objective function values within
TolFun of each other. If both conditions are not met, solvers report the solutions as
distinct. Set TolFun to 0 to obtain the results of every local solver run. Set TolFun to a
larger value to have fewer results.

Default: 1e-6

TolX

Describes how close two points must be for solvers to consider them identical for creating
the vector of local solutions. Solvers compute the distance between a pair of points with
norm, the Euclidean distance. Solvers consider two solutions identical if they are within
TolX distance of each other and have objective function values within TolFun of each
other. If both conditions are not met, solvers report the solutions as distinct. Set TolX to
0 to obtain the results of every local solver run. Set TolX to a larger value to have fewer
results.

Default: 1e-6

Methods

run Find global minimum

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB Programming Fundamentals documentation.
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Examples

Solve a problem using a default GlobalSearch object:

opts = optimoptions(@fmincon,'Algorithm','interior-point');

problem = createOptimProblem('fmincon','objective',...

 @(x) x.^2 + 4*sin(5*x),'x0',3,'lb',-5,'ub',5,'options',opts);

gs = GlobalSearch;

[x,f] = run(gs,problem)

Algorithms

A detailed description of the algorithm appears in “GlobalSearch Algorithm” on page
3-46. Ugray et al. [1] describes both the algorithm and the scatter-search method of
generating trial points.

References

[1] Ugray, Zsolt, Leon Lasdon, John Plummer, Fred Glover, James Kelly, and Rafael
Martí. Scatter Search and Local NLP Solvers: A Multistart Framework for Global
Optimization. INFORMS Journal on Computing, Vol. 19, No. 3, 2007, pp. 328–
340.

See Also
GlobalOptimSolution | MultiStart | createOptimProblem
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list
Class: CustomStartPointSet

List custom start points in set

Syntax

tpts = list(CS)

Description

tpts = list(CS) returns the matrix of start points in the CS CustomStartPoints
object.

Input Arguments

CS

A CustomStartPointSet object.

Output Arguments

tpts

Matrix of start points. The rows of tpts represent the start points.

Examples

Create a CustomStartPointSet containing 40 seven-dimensional normally distributed
points, then use list to get the matrix of points from the object:

startpts = randn(40,7) % 40 seven-dimensional start points

cs = CustomStartPointSet(startpts); % cs is an object
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startpts2 = list(cs) % startpts2 = startpts

See Also
CustomStartPointSet | createOptimProblem
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list
Class: RandomStartPointSet

Generate start points

Syntax

points = list(RandSet,problem)

Description

points = list(RandSet,problem) generates pseudorandom start points using the
parameters in the RandSet RandomStartPointSet object, and information from the
problem problem structure.

Input Arguments

RandSet

A RandomStartPointSet object. This contains parameters for generating the points:
number of points, and artificial bounds.

problem

An optimization problem structure. list generates points uniformly within the bounds
of the problem structure. If a component is unbounded, list uses the artificial bounds
from RandSet. list takes the dimension of the points from the x0 field in problem.

Output Arguments

points

A k-by-n matrix. The number of rows k is the number of start points that RandSet
specifies. The number of columns n is the dimension of the start points. n is equal to the
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number of elements in the x0 field in problem. The MultiStart algorithm uses each
row of points as an initial point in an optimization.

Examples

Create a matrix representing 40 seven-dimensional start points:

rs = RandomStartPointSet('NumStartPoints',40); % 40 points

problem = createOptimProblem('fminunc','x0',ones(7,1),...

    'objective',@rosenbrock);

ptmatrix = list(rs,problem); % matrix values between 

   % -1000 and 1000 since those are the default bounds 

   % for unconstrained dimensions

Algorithms

The list method generates a pseudorandom random matrix using the default random
number stream. Each row of the matrix represents a start point to run. list generates
points that satisfy the bounds in problem. If lb is the vector of lower bounds, ub is the
vector of upper bounds, there are n dimensions in a point, and there are k rows in the
matrix, the random matrix is

lb + (ub - lb).*rand(k,n)

• If a component has no bounds, RandomStartPointSet uses a lower bound of -
ArtificialBound, and an upper bound of ArtificialBound.

• If a component has a lower bound lb, but no upper bound, RandomStartPointSet
uses an upper bound of lb + 2*ArtificialBound.

• Similarly, if a component has an upper bound ub, but no lower bound,
RandomStartPointSet uses a lower bound of ub - 2*ArtificialBound.

The default value of ArtificialBound is 1000.

To obtain identical pseudorandom results, reset the default random number stream. See
“Reproduce Results” on page 3-69.

See Also
RandomStartPointSet | createOptimProblem | MultiStart
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MultiStart class

Find multiple local minima

Description

A MultiStart object contains properties (options) that affect how the run method
repeatedly runs a local solver, or generates a GlobalOptimSolution object.

Construction

MS = MultiStart constructs MS, a MultiStart solver with its properties set to the
defaults.

MS = MultiStart('PropertyName',PropertyValue,...) constructs MS using
options, specified as property name and value pairs.

MS = MultiStart(oldMS,'PropertyName',PropertyValue,...) creates a copy
of the oldMS MultiStart solver, with the named properties changed to the specified
values.

MS = MultiStart(GS) constructs MS, a MultiStart solver, with common parameter
values from the GS GlobalSearch solver.

Properties

Display

Detail level of the output to the Command Window:

• 'final' — Report summary results after run finishes.
• 'iter' — Report results after each local solver run, in addition to the final summary.
• 'off' — No display.

Default: final
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MaxTime

Tolerance on the time MultiStart runs. MultiStart and its local solvers halt when
they see MaxTime seconds have passed since the beginning of the run. Time means wall
clock as opposed to processor cycles.

Default: Inf

OutputFcns

A function handle or cell array of function handles to output functions. Output functions
run after each local solver call. They also run when the global solver starts and ends.
Write your output functions using the syntax described in “OutputFcns” on page 10-3.
See “GlobalSearch Output Function” on page 3-37.

Default: []

PlotFcns

A function handle or cell array of function handles to plot functions. Plot functions run
after each local solver call. They also run when the global solver starts and ends. Write
your plot functions using the syntax described in “OutputFcns” on page 10-3. There are
two built-in plot functions:

• @gsplotbestf plots the best objective function value.
• @gsplotfunccount plots the number of function evaluations.

See “MultiStart Plot Function” on page 3-41.

Default: []

StartPointsToRun

Directs the solver to exclude certain start points from being run:

• all — Accept all start points.
• bounds — Reject start points that do not satisfy bounds.
• bounds-ineqs — Reject start points that do not satisfy bounds or inequality

constraints.

Default: all
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TolFun

Describes how close two objective function values must be for solvers to consider them
identical for creating the vector of local solutions. Solvers consider two solutions identical
if they are within TolX distance of each other and have objective function values within
TolFun of each other. If both conditions are not met, solvers report the solutions as
distinct. Set TolFun to 0 to obtain the results of every local solver run. Set TolFun to a
larger value to have fewer results.

Default: 1e-6

TolX

Describes how close two points must be for solvers to consider them identical for creating
the vector of local solutions. Solvers compute the distance between a pair of points with
norm, the Euclidean distance. Solvers consider two solutions identical if they are within
TolX distance of each other and have objective function values within TolFun of each
other. If both conditions are not met, solvers report the solutions as distinct. Set TolX to
0 to obtain the results of every local solver run. Set TolX to a larger value to have fewer
results.

Default: 1e-6

UseParallel

Distribute local solver calls to multiple processors:

• true — Distribute the local solver calls to multiple processors.
• false — Cannot not run in parallel.

Default: false

Methods

run Run local solver from multiple points

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB Programming Fundamentals documentation.
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Examples

Run MultiStart on 20 instances of a problem using the fmincon sqp algorithm:

opts = optimoptions(@fmincon,'Algorithm','sqp');

problem = createOptimProblem('fmincon','objective',...

 @(x) x.^2 + 4*sin(5*x),'x0',3,'lb',-5,'ub',5,'options',opts);

ms = MultiStart;

[x,f] = run(ms,problem,20)

Algorithms

A detailed description of the algorithm appears in “MultiStart Algorithm” on page 3-50.

See Also
RandomStartPointSet | GlobalOptimSolution | GlobalSearch | createOptimProblem
| CustomStartPointSet
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particleswarm

Particle swarm optimization

Syntax

x = particleswarm(fun,nvars)

x = particleswarm(fun,nvars,lb,ub)

x = particleswarm(fun,nvars,lb,ub,options)

x = particleswarm(problem)

[x,fval,exitflag,output] = particleswarm( ___ )

Description

x = particleswarm(fun,nvars) attempts to find a vector x that achieves a local
minimum of fun. nvars is the dimension (number of design variables) of fun.

x = particleswarm(fun,nvars,lb,ub) defines a set of lower and upper bounds on
the design variables, x, so that a solution is found in the range lb ≤ x ≤ ub.

x = particleswarm(fun,nvars,lb,ub,options) minimizes with the default
optimization parameters replaced by values in options. Set lb = [] and ub = [] if no
bounds exist.

x = particleswarm(problem) finds the minimum for problem, where problem is a
structure.

[x,fval,exitflag,output] = particleswarm( ___ ), for any input arguments
described above, returns:

• A scalar fval, which is the objective function value fun(x)
• A value exitflag describing the exit condition
• A structure output containing information about the optimization process
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Examples

Minimize a Simple Function

Minimize a simple function of two variables.

Define the objective function.

fun = @(x)x(1)*exp(-norm(x)^2);

Call particleswarm to minimize the function.

rng default  % For reproducibility

x = particleswarm(fun,2)

Optimization ended: relative change in the objective value

over the last OPTIONS.StallIterLimit iterations is less than OPTIONS.TolFun.

x =

  629.4474  311.4814

This solution is far from the true minimum, as you see in a function plot.

ezsurf(@(x,y)x.*exp(-(x.^2+y.^2)))
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Usually, it is best to set bounds. See “Minimize a Simple Function with Bounds” on page
11-59.

Minimize a Simple Function with Bounds

Minimize a simple function of two variables with bound constraints.

Define the objective function.

fun = @(x)x(1)*exp(-norm(x)^2);

Set bounds on the variables.

lb = [-10,-15];
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ub = [15,20];

Call particleswarm to minimize the function.

rng default  % For reproducibility

x = particleswarm(fun,2,lb,ub)

Optimization ended: change in the objective value less than options.TolFun.

x =

   -0.7071   -0.0000

Minimize Using Nondefault Options

Use a larger population and a hybrid function to try to get a better solution.

Specify the objective function and bounds.

fun = @(x)x(1)*exp(-norm(x)^2);

lb = [-10,-15];

ub = [15,20];

Specify the options.

options = optimoptions('particleswarm','SwarmSize',100,'HybridFcn',@fmincon);

Call particleswarm to minimize the function.

rng default  % For reproducibility

x = particleswarm(fun,2,lb,ub,options)

Optimization ended: change in the objective value less than options.TolFun.

x =

   -0.7071   -0.0000

Examine the Solution Process

Return the optional output arguments to examine the solution process in more detail.

Define the problem.

fun = @(x)x(1)*exp(-norm(x)^2);

lb = [-10,-15];

ub = [15,20];
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options = optimoptions('particleswarm','SwarmSize',50,'HybridFcn',@fmincon);

Call particleswarm with all outputs to minimize the function and get information
about the solution process.

rng default  % For reproducibility

[x,fval,exitflag,output] = particleswarm(fun,2,lb,ub,options)

Optimization ended: change in the objective value less than options.TolFun.

x =

   -0.7071   -0.0000

fval =

   -0.4289

exitflag =

     1

output = 

      rngstate: [1x1 struct]

    iterations: 43

     funccount: 2200

       message: 'Optimization ended: change in the objective value less than options....'

• “Optimize Using Particle Swarm” on page 6-3
• “Particle Swarm Output Function” on page 6-7

Input Arguments

fun — Objective function
function handle

Objective function, specified as a function handle. The objective function should accept a
row vector of length nvars and return a scalar value.
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When the 'Vectorized' option is 'on', fun should accept a swarm-by-nvars matrix,
where swarm is the current population size. In this case, fun should return a vector the
same length as swarm containing the fitness function values. fun should not assume
any particular size for swarm, since particleswarm can pass a single member of a
population even in a vectorized calculation.
Example: fun = @(x)(x-[4,2]).^2

Data Types: function_handle

nvars — Number of variables
positive integer

Number of variables, specified as a positive integer.
Example: 4

Data Types: double

lb — Lower bounds
[] (default) | real vector or array

Lower bounds, specified as a vector or array of doubles. lb represents the lower bounds
element-wise in lb ≤ x ≤ ub.

Internally, particleswarm converts an array lb to the vector lb(:).

Example: lb = [0;-Inf;4] means x(1) ≥ 0, x(3) ≥ 4.

Data Types: double

ub — Upper bounds
[] (default) | real vector or array

Upper bounds, specified as a vector or array of doubles. ub represents the upper bounds
element-wise in lb ≤ x ≤ ub.

Internally, particleswarm converts an array ub to the vector ub(:).

Example: ub = [Inf;4;10] means x(2) ≤ 4, x(3) ≤ 10.

Data Types: double

options — Options for particleswarm
options created using optimoptions
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Options for particleswarm, specified as the output of the optimoptions function.

CreationFcn Handle to the function that creates the initial swarm. Default is
@pswcreationuniform. See “Swarm Creation” on page 10-54.

Display Level of display returned to the command line.

• 'off' or 'none' displays no output.
• 'final' displays just the final output (default).
• 'iter' gives iterative display.

DisplayIntervalInterval for iterative display. The iterative display prints one line for
every DisplayInterval iterations. Default is 1.

FunValCheck Check whether objective function and constraints values are valid.
'on' displays an error when the objective function or constraints
return a value that is complex, Inf, or NaN. The default, 'off',
displays no error.

HybridFcn Handle to a function that continues the optimization after
particleswarm terminates. Possible values:

• @fmincon

• @fminsearch

• @fminunc

• @patternsearch

Can also be a cell array specifying the hybrid function and its
options structure, such as {@fmincon,fminconopts}. Default is
[]. See “Hybrid Function” on page 10-57.

InertiaRange Two-element real vector with same sign values in increasing order.
Gives the lower and upper bound of the adaptive inertia. To obtain a
constant (nonadaptive) inertia, set both elements of InertiaRange
to the same value. Default is [0.1,1.1]. See “Particle Swarm
Optimization Algorithm” on page 6-10.

InitialSwarm Initial population or partial population of particles. M-by-nvars
matrix, where each row represents one particle. If M < SwarmSize,
then particleswarm creates more particles so that the total
number is SwarmSize. If M > SwarmSize, then particleswarm
uses the first SwarmSize rows.
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InitialSwarmSpanInitial range of particle positions that @pswcreationuniform
creates. Can be a positive scalar or a vector with nvars elements,
where nvars is the number of variables. The range for any particle
component is -InitialSwarmSpan/2,InitialSwarmSpan/2,
shifted and scaled if necessary to match any bounds. Default is
2000.

MaxIter Maximum number of iterations particleswarm takes. Default is
200*nvars, where nvars is the number of variables.

MaxTime Maximum time in seconds that particleswarm runs. Default is
Inf.

MinFractionNeighborsMinimum adaptive neighborhood size, a scalar from 0 to 1. Default
is 0.25. See “Particle Swarm Optimization Algorithm” on page 6-10.

ObjectiveLimit Minimum objective value, a stopping criterion. Scalar, with default -
Inf.

OutputFcns Function handle or cell array of function handles. Output functions
can read iterative data, and stop the solver. Default is []. See
“Output Function and Plot Function” on page 10-57.

PlotFcns Function handle or cell array of function handles. Plot functions can
read iterative data, plot each iteration, and stop the solver. Default
is []. Available built-in plot function: @pswplotbestf. See “Output
Function and Plot Function” on page 10-57.

SelfAdjustment Weighting of each particle’s best position when adjusting velocity.
Finite scalar with default 1.49. See “Particle Swarm Optimization
Algorithm” on page 6-10.

SocialAdjustmentWeighting of the neighborhood’s best position when adjusting
velocity. Finite scalar with default 1.49. See “Particle Swarm
Optimization Algorithm” on page 6-10.

StallIterLimit Positive integer with default 20. Iterations end when the
relative change in best objective function value over the last
StallIterLimit iterations is less than options.TolFun.

StallTimeLimit Maximum number of seconds without an improvement in the best
known objective function value. Positive scalar with default Inf.

SwarmSize Number of particles in the swarm, an integer greater than 1. Default
is min(100,10*nvars), where nvars is the number of variables.
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TolFun Nonnegative scalar with default 1e-6. Iterations end when the
relative change in best objective function value over the last
StallIterLimit iterations is less than options.TolFun.

UseParallel Compute objective function in parallel when true. Default is false.
See “Parallel or Vectorized Function Evaluation” on page 10-59.

Vectorized Compute objective function in vectorized fashion when 'on'.
Default is 'off'. See “Parallel or Vectorized Function Evaluation”
on page 10-59.

problem — Optimization problem
structure

Optimization problem, specified as a structure with the following fields.

solver 'particleswarm'

objective Function handle to the objective function, or string with the name of
the objective function.

nvars Number of variables in problem.
lb Vector or array of lower bounds.
ub Vector or array of upper bounds.
options Options created by optimoptions.
rngstate Optional state of the random number generator at the beginning of

the solution process.

Data Types: struct

Output Arguments

x — Solution
real vector

Solution, returned as a real vector that minimizes the objective function subject to any
bound constraints.

fval — Objective value
real scalar

Objective value, returned as the real scalar fun(x).
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exitflag — Algorithm stopping condition
integer

Algorithm stopping condition, returned as an integer identifying the reason the
algorithm stopped. The following lists the values of exitflag and the corresponding
reasons particleswarm stopped.

1 Relative change in the objective value over the last
options.StallIterLimit iterations is less than
options.TolFun.

0 Number of iterations exceeded options.MaxIter.
-1 Iterations stopped by output function or plot function.
-2 Bounds are inconsistent: for some i, lb(i) > ub(i).
-3 Best objective function value is at or below

options.ObjectiveLimit.
-4 Best objective function value did not change within

options.StallTimeLimit seconds.
-5 Run time exceeded options.MaxTime seconds.

output — Solution process summary
structure

Solution process summary, returned as a structure containing information about the
optimization process.

iterations Number of solver iterations
funccount Number of objective function evaluations.
message String giving the reason the algorithm stopped.
rngstate State of the default random number generator just before the

algorithm started.

More About

Algorithms

For a description of the particle swarm optimization algorithm, see “Particle Swarm
Optimization Algorithm” on page 6-10.
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• “What Is Particle Swarm Optimization?” on page 6-2
• “Optimization Problem Setup”

See Also
ga | patternsearch
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patternsearch
Find minimum of function using pattern search

Syntax

x = patternsearch(fun,x0)

x = patternsearch(fun,x0,A,b)

x = patternsearch(fun,x0,A,b,Aeq,beq)

x = patternsearch(fun,x0,A,b,Aeq,beq,lb,ub)

x = patternsearch(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)

x = patternsearch(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

x = patternsearch(problem)

[x,fval] = patternsearch( ___ )

[x,fval,exitflag,output] = patternsearch( ___ )

Description

x = patternsearch(fun,x0) finds a local minimum, x, to the function handle fun
that computes the values of the objective function. x0 is a real vector specifying an initial
point for the pattern search algorithm.

Note: “Passing Extra Parameters” explains how to pass extra parameters to the objective
function and nonlinear constraint functions, if necessary.

x = patternsearch(fun,x0,A,b) minimizes fun subject to the linear inequalities
A*x ≤ b. See “Linear Inequality Constraints”.

x = patternsearch(fun,x0,A,b,Aeq,beq) minimizes fun subject to the linear
equalities Aeq*x = beq and A*x ≤ b. If no linear inequalities exist, set A = [] and b =
[].

x = patternsearch(fun,x0,A,b,Aeq,beq,lb,ub) defines a set of lower and
upper bounds on the design variables in x, so that the solution is always in the range
lb ≤ x ≤ ub. If no linear equalities exist, set Aeq = [] and beq = []. If x(i) has no
lower bound, set lb(i) = -Inf. If x(i) has no upper bound, set ub(i) = Inf.
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x = patternsearch(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon) subjects the
minimization to the nonlinear inequalities c(x) or equalities ceq(x) defined in
nonlcon. patternsearch optimizes fun such that c(x) ≤ 0 and ceq(x) = 0. If no
bounds exist, set lb = [], ub = [], or both.

x = patternsearch(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) minimizes
fun with the optimization options specified in options. Use psoptimset to set these
options. If there are no nonlinear inequality or equality constraints, set nonlcon = [].

x = patternsearch(problem) finds the minimum for problem, where problem
is a structure described in “Input Arguments” on page 11-76. Create the problem
structure by exporting a problem from Optimization app, as described in “Exporting Your
Work”.

[x,fval] = patternsearch( ___ ), for any syntax, returns the value of the objective
function fun at the solution x.

[x,fval,exitflag,output] = patternsearch( ___ ) additionally returns
exitflag, a value that describes the exit condition of patternsearch, and a structure
output with information about the optimization process.

Examples

Unconstrained Pattern Search Minimization

Minimize an unconstrained problem using the patternsearch solver.

Create the following two-variable objective function. On your MATLAB path, save the
following code to a file named psobj.m.

function y = psobj(x)

y = exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*cos(x(2)));

Set the objective function to @psobj.

fun = @psobj;

Find the minimum, starting at the point [0,0].

x0 = [0,0];

x = patternsearch(fun,x0)
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Optimization terminated: mesh size less than options.TolMesh.

x =

   -0.7037   -0.1860

Pattern Search with a Linear Inequality Constraint

Minimize a function subject to some linear inequality constraints.

Create the following two-variable objective function. On your MATLAB path, save the
following code to a file named psobj.m.

function y = psobj(x)

y = exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*cos(x(2)));

Set the objective function to @psobj.

fun = @psobj;

Set the two linear inequality constraints.

A = [-3,-2;

    -4,-7];

b = [-1;-8];

Find the minimum, starting at the point [0.5,-0.5].

x0 = [0.5,-0.5];

x = patternsearch(fun,x0,A,b)

Optimization terminated: mesh size less than options.TolMesh.

x =

    5.2824   -1.8758

Pattern Search with Bounds

Find the minimum of a function that has only bound constraints.

Create the following two-variable objective function. On your MATLAB path, save the
following code to a file named psobj.m.

function y = psobj(x)
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y = exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*cos(x(2)));

Set the objective function to @psobj.

fun = @psobj;

Find the minimum when 0 ≤ x(1) ≤ ∞ and –∞ ≤ x(2) ≤ –3.

lb = [0,-Inf];

ub = [Inf,-3];

A = [];

b = [];

Aeq = [];

beq = [];

Find the minimum, starting at the point [1,-5].

x0 = [1,-5];

x = patternsearch(fun,x0,A,b,Aeq,beq,lb,ub)

Optimization terminated: mesh size less than options.TolMesh.

x =

    0.1880   -3.0000

Pattern Search with Nonlinear Constraints

Find the minimum of a function subject to a nonlinear inequality constraint.

Create the following two-variable objective function. On your MATLAB path, save the
following code to a file named psobj.m.

function y = psobj(x)

y = exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*cos(x(2)));

Set the objective function to @psobj.

fun = @psobj;

Create the nonlinear constraint

xy
x

y

2
2

2

2
2

2

2

+ +( ) +
-( )

£ .



11 Functions — Alphabetical List

11-72

To do so, on your MATLAB path, save the following code to a file named
ellipsetilt.m.

function [c,ceq] = ellipsetilt(x)

ceq = [];

c = x(1)*x(2)/2 + (x(1)+2)^2 + (x(2)-2)^2/2 - 2;

Start patternsearch from the initial point [-2,-2].

x0 = [-2,-2];

A = [];

b = [];

Aeq = [];

beq = [];

lb = [];

ub = [];

nonlcon = @ellipsetilt;

x = patternsearch(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)

Optimization terminated: mesh size less than options.TolMesh

 and constraint violation is less than options.TolCon.

x =

   -1.5144    0.0874

Pattern Search with Nondefault Options

Set options to observe the progress of the patternsearch solution process.

Create the following two-variable objective function. On your MATLAB path, save the
following code to a file named psobj.m.

function y = psobj(x)

y = exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*cos(x(2)));

Set the objective function to @psobj.

fun = @psobj;

Set options to give iterative display and to plot the objective function at each iteration.

options = psoptimset('Display','iter','PlotFcns',@psplotbestf);

Find the unconstrained minimum of the objective starting from the point [0,0].
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x0 = [0,0];

A = [];

b = [];

Aeq = [];

beq = [];

lb = [];

ub = [];

nonlcon = [];

x = patternsearch(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

Iter     f-count          f(x)      MeshSize     Method

    0        1              1             1      

    1        4       -5.88607             2     Successful Poll

    2        8       -5.88607             1     Refine Mesh
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    3       12       -5.88607           0.5     Refine Mesh

    4       16       -5.88607          0.25     Refine Mesh

(output trimmed)

   63      218       -7.02545     1.907e-06     Refine Mesh

   64      221       -7.02545     3.815e-06     Successful Poll

   65      225       -7.02545     1.907e-06     Refine Mesh

   66      229       -7.02545     9.537e-07     Refine Mesh

Optimization terminated: mesh size less than options.TolMesh.

x =

   -0.7037   -0.1860

Obtain Function Value And Minimizing Point

Find a minimum value of a function and report both the location and value of the
minimum.

Create the following two-variable objective function. On your MATLAB path, save the
following code to a file named psobj.m.

function y = psobj(x)

y = exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*cos(x(2)));

Set the objective function to @psobj.

fun = @psobj;

Find the unconstrained minimum of the objective, starting from the point [0,0]. Return
both the location of the minimum, x, and the value of fun(x).

x0 = [0,0];

[x,fval] = patternsearch(fun,x0)

Optimization terminated: mesh size less than options.TolMesh.

x =

   -0.7037   -0.1860

fval =
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   -7.0254

Obtain All Outputs

To examine the patternsearch solution process, obtain all outputs.

Create the following two-variable objective function. On your MATLAB path, save the
following code to a file named psobj.m.

function y = psobj(x)

y = exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*cos(x(2)));

Set the objective function to @psobj.

fun = @psobj;

Find the unconstrained minimum of the objective, starting from the point [0,0]. Return
the solution, x, the objective function value at the solution, fun(x), the exit flag, and the
output structure.

x0 = [0,0];

[x,fval,exitflag,output] = patternsearch(fun,x0)

Optimization terminated: mesh size less than options.TolMesh.

x =

   -0.7037   -0.1860

fval =

   -7.0254

exitflag =

     1

output = 

         function: @psobj

      problemtype: 'unconstrained'

       pollmethod: 'gpspositivebasis2n'
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    maxconstraint: []

     searchmethod: []

       iterations: 66

        funccount: 229

         meshsize: 9.5367e-07

         rngstate: [1x1 struct]

          message: 'Optimization terminated: mesh size less than options.TolMesh.'

The exitflag is 1, indicating convergence to a local minimum.

The output structure includes information such as how many iterations
patternsearch took, and how many function evaluations. Compare this output
structure with the results from “Pattern Search with Nondefault Options” on page
11-72. In that example, you obtain some of this information, but did not obtain, for
example, the number of function evaluations.

• “Optimize Using the GPS Algorithm” on page 4-8
• “Coding and Minimizing an Objective Function Using Pattern Search”
• “Constrained Minimization Using Pattern Search”
• “Pattern Search Options”
• “Optimize an ODE in Parallel” on page 4-85
• “Pattern Search Climbs Mount Washington”

Input Arguments
fun — Function to be minimized
function handle | function name

Function to be minimized, specified as a function handle or function name. The fun
function accepts a vector x and returns a real scalar f, which is the objective function
evaluated at x.

You can specify fun as a function handle for a file

x = patternsearch(@myfun,x0)

Here, myfun is a MATLAB function such as

function f = myfun(x)

f = ...            % Compute function value at x

fun can also be a function handle for an anonymous function
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x = patternsearch(@(x)norm(x)^2,x0,A,b);

Example: fun = @(x)sin(x(1))*cos(x(2))

Data Types: char | function_handle

x0 — Initial point
real vector

Initial point, specified as a real vector. patternsearch uses the number of elements in
x0 to determine the number of variables that fun accepts.

Example: x0 = [1,2,3,4]

Data Types: double

A — Linear inequality constraints
real matrix

Linear inequality constraints, specified as a real matrix. A is an M-by-N matrix, where M is
the number of inequalities, and N is the number of variables (number of elements in x0).

A encodes the M linear inequalities
A*x <= b,

where x is the column vector of N variables x(:), and b is a column vector with M
elements.

For example, to specify
x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30,

give these constraints:

A = [1,2;3,4;5,6];

b = [10;20;30];

Example: To specify that the control variables sum to 1 or less, give the constraints A =
ones(1,N) and b = 1

Data Types: double

b — Linear inequality constraints
real vector
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Linear inequality constraints, specified as a real vector. b is an M-element vector related
to the A matrix. If you pass b as a row vector, solvers internally convert b to the column
vector b(:).

b encodes the M linear inequalities
A*x <= b,

where x is the column vector of N variables x(:), and A is a matrix of size M-by-N.

For example, to specify
x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30,

give these constraints:

A = [1,2;3,4;5,6];

b = [10;20;30];

Example: To specify that the control variables sum to 1 or less, give the constraints A =
ones(1,N) and b = 1

Data Types: double

Aeq — Linear equality constraints
real matrix

Linear equality constraints, specified as a real matrix. Aeq is an Me-by-N matrix, where
Me is the number of equalities, and N is the number of variables (number of elements in
x0).

Aeq encodes the Me linear equalities
Aeq*x = beq,

where x is the column vector of N variables x(:), and beq is a column vector with Me
elements.

For example, to specify
x1 + 2x2 + 3x3 ≤ 10
2x1 + 4x2 + x3 ≤ 20,

give these constraints:

A = [1,2,3;2,4,1];

b = [10;20];
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Example: To specify that the control variables sum to 1, give the constraints Aeq =
ones(1,N) and beq = 1

Data Types: double

beq — Linear equality constraints
real vector

Linear equality constraints, specified as a real vector. beq is an Me-element vector
related to the Aeq matrix. If you pass beq as a row vector, solvers internally convert beq
to the column vector beq(:).

beq encodes the Me linear equalities
Aeq*x = beq,

where x is the column vector of N variables x(:), and Aeq is a matrix of size Meq-by-N.

For example, to specify
x1 + 2x2 + 3x3 ≤ 10
2x1 + 4x2 + x3 ≤ 20,

give these constraints:

A = [1,2,3;2,4,1];

b = [10;20];

Example: To specify that the control variables sum to 1, give the constraints Aeq =
ones(1,N) and beq = 1

Data Types: double

lb — Lower bounds
real vector | real array

Lower bounds, specified as a real vector or real array. If the number of elements in x0 is
equal to that of lb, then lb specifies that
x(i) >= lb(i)

for all i.

If numel(lb) < numel(x0), then lb specifies that
x(i) >= lb(i)

for
1 <= i <= numel(lb)
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In this case, solvers issue a warning.
Example: To specify that all control variables are positive, lb = zeros(size(x0))

Data Types: double

ub — Upper bounds
real vector | real array

Upper bounds, specified as a real vector or real array. If the number of elements in x0 is
equal to that of ub, then ub specifies that
x(i) <= ub(i)

for all i.

If numel(ub) < numel(x0), then ub specifies that
x(i) <= ub(i)

for
1 <= i <= numel(ub)

In this case, solvers issue a warning.
Example: To specify that all control variables are less than one, ub = ones(size(x0))

Data Types: double

nonlcon — Nonlinear constraints
function handle | function name

Nonlinear constraints, specified as a function handle or function name. nonlcon is a
function that accepts a vector or array x and returns two arrays, c(x) and ceq(x).

• c(x) is the array of nonlinear inequality constraints at x. patternsearch attempts
to satisfy
c(x) <= 0

for all entries of c.
• ceq(x) is the array of nonlinear equality constraints at x. patternsearch attempts

to satisfy
ceq(x) = 0

for all entries of ceq.
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For example,

x = patternsearch(@myfun,x0,A,b,Aeq,beq,lb,ub,@mycon)

where mycon is a MATLAB function such as

function [c,ceq] = mycon(x)

c = ...     % Compute nonlinear inequalities at x.

ceq = ...   % Compute nonlinear equalities at x.

For more information, see “Nonlinear Constraints ”.
Data Types: char | function_handle

options — Optimization options
structure such as the one returned by psoptimset

Optimization options, specified as a structure such as the one returned by psoptimset.
For details, see “Pattern Search Options” on page 10-9.

Option Description Values

Cache With Cache set to 'on', patternsearch keeps a
history of the mesh points it polls. At subsequent
iterations, patternsearch does not poll points
close to those it already polled. Use this option
if patternsearch runs slowly while computing
the objective function. If the objective function is
stochastic, do not to use this option.

'on' | {'off'}

CacheSize Size of the history. Positive scalar | {1e4}
CacheTol Largest distance from the current mesh

point to any point in the history in order for
patternsearch to avoid polling the current
point. Use if 'Cache' option is set to 'on'.

Positive scalar | {eps}

CompletePoll Complete poll around current point. See “How
Pattern Search Polling Works” on page 4-15.

'on' | {'off'}

CompleteSearch Complete search around current point when the
search method is a poll method. See “Searching
and Polling” on page 4-26.

'on' | {'off'}

Display Level of display. 'off' | 'iter'
| 'diagnose' |
{'final'}
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Option Description Values

InitialMeshSize Initial mesh size for pattern algorithm. See “How
Pattern Search Polling Works” on page 4-15.

Positive scalar | {1.0}

InitialPenalty Initial value of the penalty parameter. See
“Nonlinear Constraint Solver Algorithm” on page
4-37.

Positive scalar | {10}

MaxFunEvals Maximum number of objective function
evaluations.

Positive integer |
{2000*numberOfVariables}

MaxIter Maximum number of iterations. Positive integer |
{100*numberOfVariables}

MaxMeshSize Maximum mesh size used in a poll or search step.
See “How Pattern Search Polling Works” on page
4-15.

Positive scalar | {Inf}

MeshAccelerator Accelerate convergence near a minimum.
patternsearch contracts by an extra factor of
1/2.

'on' | {'off'}

MeshContraction Mesh contraction factor for unsuccessful iteration. Positive scalar | {0.5}
MeshExpansion Mesh expansion factor for successful iteration. Positive scalar | {2.0}
MeshRotate Rotate the pattern before declaring a point to be

optimum. See “Mesh Options” on page 10-17.
'off' | {'on'}

OutputFcns Specifies a user-defined function that an
optimization function calls at each iteration.

Function handle or
cell array of function
handles | {[]}

PenaltyFactor Penalty update parameter. See “Nonlinear
Constraint Solver Algorithm” on page 4-37.

Positive scalar | {100}

PlotFcns Specifies plots of output from the pattern search. {[]} | @psplotbestf
| @psplotmeshsize
| @psplotfuncount
| @psplotbestx |
custom plot function

PlotInterval Specifies that plot functions will be called at every
interval.

{1} | positive integer

PollingOrder Order of poll directions in pattern search . 'Random' | 'Success'
| {'Consecutive'}
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Option Description Values

PollMethod Polling strategy used in pattern search. {'GPSPositiveBasis2N'}

|

'GPSPositiveBasisNp1'

|

'GSSPositiveBasis2N'

|

'GSSPositiveBasisNp1'

|

'MADSPositiveBasis2N'

|

'MADSPositiveBasisNp1'

ScaleMesh Automatic scaling of variables. {'on'} | 'off'
SearchMethod Type of search used in pattern search. {[]} |

@GPSPositiveBasis2N

|

@GPSPositiveBasisNp1

|

@GSSPositiveBasis2N

|

@GSSPositiveBasisNp1

|

@MADSPositiveBasis2N

|

@MADSPositiveBasisNp1

| @searchga |

@searchlhs |

@searchneldermead |

custom search function
TimeLimit Total time (in seconds) allowed for optimization. Positive scalar | {Inf}
TolBind Binding tolerance. See “Constraint Parameters” on

page 10-19.
Positive scalar | {1e-3}

TolCon Tolerance on constraints. Positive scalar | {1e-6}
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Option Description Values

TolFun Tolerance on function. Iterations stop if the change
in function value is less than TolFun and the
mesh size is less than TolX. Does not apply to
MADS polling.

Positive scalar | {1e-6}

TolMesh Tolerance on mesh size. Positive scalar | {1e-6}
TolX Tolerance on variable. Iterations stop if both the

change in position and the mesh size are less than
TolX. Does not apply to MADS polling.

Positive scalar | {1e-6}

UseParallel Compute objective and nonlinear constraint
functions in parallel. See “Vectorize and Parallel
Options (User Function Evaluation)” on page
10-24 and “How to Use Parallel Processing” on
page 9-12.

true | {false}

Vectorized Specifies whether functions are vectorized. See
“Vectorize and Parallel Options (User Function
Evaluation)” on page 10-24 and “Vectorize the
Objective and Constraint Functions” on page 4-80.

'on' | {'off'}

Example: options = psoptimset('MaxIter',150,'TolMesh',1e-4)

Data Types: struct

problem — Problem structure
structure

Problem structure, specified as a structure with the following fields:

• objective — Objective function
• x0 — Starting point
• Aineq — Matrix for linear inequality constraints
• bineq — Vector for linear inequality constraints
• Aeq — Matrix for linear equality constraints
• beq — Vector for linear equality constraints
• lb — Lower bound for x
• ub — Upper bound for x
• nonlcon — Nonlinear constraint function
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• solver — 'patternsearch'
• options — Options structure created with psoptimset
• rngstate — Optional field to reset the state of the random number generator

Create the structure problem by exporting a problem from the Optimization app, as
described in “Importing and Exporting Your Work”.

Note All fields in problem are required.

Data Types: struct

Output Arguments

x — Solution
real vector

Solution, returned as a real vector. The size of x is the same as the size of x0. When
exitflag is positive, x is typically a local solution to the problem.

fval — Objective function value at the solution
real number

Objective function value at the solution, returned as a real number. Generally,
fval = fun(x).

exitflag — Reason patternsearch stopped
integer

Reason patternsearch stopped, returned as an integer.

Exit Flag Meaning

Without nonlinear constraints — The magnitude of the mesh size is less
than the specified tolerance, and the constraint violation is less than TolCon.

1

With nonlinear constraints — The magnitude of the complementarity
measure (defined after this table) is less than sqrt(TolCon), the
subproblem is solved using a mesh finer than TolMesh, and the constraint
violation is less than TolCon.
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Exit Flag Meaning

2 The change in x and the mesh size are both less than the specified tolerance,
and the constraint violation is less than TolCon.

3 The change in fval and the mesh size are both less than the specified
tolerance, and the constraint violation is less than TolCon.

4 The magnitude of the step is smaller than machine precision, and the
constraint violation is less than TolCon.

0 The maximum number of function evaluations or iterations is reached.
-1 Optimization terminated by an output function or plot function.
-2 No feasible point found.

In the nonlinear constraint solver, the complementarity measure is the norm of the vector
whose elements are ciλi, where ci is the nonlinear inequality constraint violation, and λi is
the corresponding Lagrange multiplier.

output — Information about the optimization process
structure

Information about the optimization process, returned as a structure with these fields:

• function — Objective function.
• problemtype — String describing the type of problem:

• 'unconstrained'

• 'boundconstraints'

• 'linearconstraints'

• 'nonlinearconstr'

• pollmethod — Polling technique.
• searchmethod — Search technique used, if any.
• iterations — Total number of iterations.
• funccount — Total number of function evaluations.
• meshsize — Mesh size at x.
• maxconstraint — Maximum constraint violation, if any.
• rngstate — State of the MATLAB random number generator, just before the

algorithm started. You can use the values in rngstate to reproduce the output when
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you use a random search method or random poll method. See “Reproduce Results” on
page 5-68, which discusses the identical technique for ga.

• message — Reason why the algorithm terminated.

More About

Algorithms

By default, patternsearch looks for a minimum based on an adaptive mesh that, in
the absence of linear constraints, is aligned with the coordinate directions. See “What Is
Direct Search?” on page 4-2 and “How Pattern Search Polling Works” on page 4-15.
• “Optimization Workflow” on page 1-16
• “What Is Direct Search?” on page 4-2
• “Pattern Search Terminology” on page 4-12
• “How Pattern Search Polling Works” on page 4-15
• “Polling Types” on page 4-47
• “Search and Poll” on page 4-32
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See Also
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psoptimget
Obtain values of pattern search options structure

Syntax

val = psoptimget(options,'name')

val = psoptimget(options,'name',default)

Description

val = psoptimget(options,'name') returns the value of the parameter name from
the pattern search options structure options. psoptimget(options,'name') returns
an empty matrix [] if the value of name is not specified in options. It is only necessary
to type enough leading characters of name to uniquely identify it. psoptimget ignores
case in parameter names.

val = psoptimget(options,'name',default) returns the value of the parameter
name from the pattern search options structure options, but returns default if the
parameter is not specified (as in []) in options.

Examples
val = psoptimget(opts,'TolX',1e-4);

returns val = 1e-4 if the TolX property is not specified in opts.

More About
• “Pattern Search Options” on page 10-9

See Also
psoptimset | patternsearch
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psoptimset
Create pattern search options structure

Syntax

psoptimset

options = psoptimset

options = psoptimset(@patternsearch)

options = psoptimset('param1',value1,'param2',value2,...)

options = psoptimset(oldopts,'param1',value1,...)

options = psoptimset(oldopts,newopts)

Description

psoptimset with no input or output arguments displays a complete list of parameters
with their valid values.

options = psoptimset (with no input arguments) creates a structure called options
that contains the options, or parameters, for patternsearch, and sets parameters to [],
indicating patternsearch uses the default values.

options = psoptimset(@patternsearch) creates a structure called options that
contains the default values for patternsearch.

options = psoptimset('param1',value1,'param2',value2,...) creates a
structure options and sets the value of 'param1' to value1, 'param2' to value2,
and so on. Any unspecified parameters are set to their default values. It is sufficient to
type only enough leading characters to define the parameter name uniquely. Case is
ignored for parameter names.

options = psoptimset(oldopts,'param1',value1,...) creates a copy of
oldopts, modifying the specified parameters with the specified values.

options = psoptimset(oldopts,newopts) combines an existing options structure,
oldopts, with a new options structure, newopts. Any parameters in newopts with
nonempty values overwrite the corresponding old parameters in oldopts.
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Options

The following table lists the options you can set with psoptimset. See “Pattern Search
Options” on page 10-9 for a complete description of the options and their values. Values
in {} denote the default value. You can also view the optimization parameters and
defaults by typing psoptimset at the command line.

Option Description Values

Cache With Cache set to 'on', patternsearch keeps a
history of the mesh points it polls. At subsequent
iterations, patternsearch does not poll points
close to those it already polled. Use this option
if patternsearch runs slowly while computing
the objective function. If the objective function is
stochastic, do not to use this option.

'on' | {'off'}

CacheSize Size of the history. Positive scalar | {1e4}
CacheTol Largest distance from the current mesh

point to any point in the history in order for
patternsearch to avoid polling the current
point. Use if 'Cache' option is set to 'on'.

Positive scalar | {eps}

CompletePoll Complete poll around current point. See “How
Pattern Search Polling Works” on page 4-15.

'on' | {'off'}

CompleteSearch Complete search around current point when the
search method is a poll method. See “Searching
and Polling” on page 4-26.

'on' | {'off'}

Display Level of display. 'off' | 'iter'
| 'diagnose' |
{'final'}

InitialMeshSize Initial mesh size for pattern algorithm. See “How
Pattern Search Polling Works” on page 4-15.

Positive scalar | {1.0}

InitialPenalty Initial value of the penalty parameter. See
“Nonlinear Constraint Solver Algorithm” on page
4-37.

Positive scalar | {10}

MaxFunEvals Maximum number of objective function
evaluations.

Positive integer |
{2000*numberOfVariables}
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Option Description Values

MaxIter Maximum number of iterations. Positive integer |
{100*numberOfVariables}

MaxMeshSize Maximum mesh size used in a poll or search step.
See “How Pattern Search Polling Works” on page
4-15.

Positive scalar | {Inf}

MeshAccelerator Accelerate convergence near a minimum.
patternsearch contracts by an extra factor of
1/2.

'on' | {'off'}

MeshContraction Mesh contraction factor for unsuccessful iteration. Positive scalar | {0.5}
MeshExpansion Mesh expansion factor for successful iteration. Positive scalar | {2.0}
MeshRotate Rotate the pattern before declaring a point to be

optimum. See “Mesh Options” on page 10-17.
'off' | {'on'}

OutputFcns Specifies a user-defined function that an
optimization function calls at each iteration.

Function handle or
cell array of function
handles | {[]}

PenaltyFactor Penalty update parameter. See “Nonlinear
Constraint Solver Algorithm” on page 4-37.

Positive scalar | {100}

PlotFcns Specifies plots of output from the pattern search. {[]} | @psplotbestf
| @psplotmeshsize
| @psplotfuncount
| @psplotbestx |
custom plot function

PlotInterval Specifies that plot functions will be called at every
interval.

{1} | positive integer

PollingOrder Order of poll directions in pattern search . 'Random' | 'Success'
| {'Consecutive'}
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Option Description Values

PollMethod Polling strategy used in pattern search. {'GPSPositiveBasis2N'}

|

'GPSPositiveBasisNp1'

|

'GSSPositiveBasis2N'

|

'GSSPositiveBasisNp1'

|

'MADSPositiveBasis2N'

|

'MADSPositiveBasisNp1'

ScaleMesh Automatic scaling of variables. {'on'} | 'off'
SearchMethod Type of search used in pattern search. {[]} |

@GPSPositiveBasis2N

|

@GPSPositiveBasisNp1

|

@GSSPositiveBasis2N

|

@GSSPositiveBasisNp1

|

@MADSPositiveBasis2N

|

@MADSPositiveBasisNp1

| @searchga |

@searchlhs |

@searchneldermead |

custom search function
TimeLimit Total time (in seconds) allowed for optimization. Positive scalar | {Inf}
TolBind Binding tolerance. See “Constraint Parameters” on

page 10-19.
Positive scalar | {1e-3}

TolCon Tolerance on constraints. Positive scalar | {1e-6}
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Option Description Values

TolFun Tolerance on function. Iterations stop if the change
in function value is less than TolFun and the
mesh size is less than TolX. Does not apply to
MADS polling.

Positive scalar | {1e-6}

TolMesh Tolerance on mesh size. Positive scalar | {1e-6}
TolX Tolerance on variable. Iterations stop if both the

change in position and the mesh size are less than
TolX. Does not apply to MADS polling.

Positive scalar | {1e-6}

UseParallel Compute objective and nonlinear constraint
functions in parallel. See “Vectorize and Parallel
Options (User Function Evaluation)” on page
10-24 and “How to Use Parallel Processing” on
page 9-12.

true | {false}

Vectorized Specifies whether functions are vectorized. See
“Vectorize and Parallel Options (User Function
Evaluation)” on page 10-24 and “Vectorize the
Objective and Constraint Functions” on page 4-80.

'on' | {'off'}

See Also
patternsearch | psoptimget
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run
Class: GlobalSearch

Find global minimum

Syntax

x = run(gs,problem)

[x,fval] = run(gs,problem)

[x,fval,exitflag] = run(gs,problem)

[x,fval,exitflag,output] = run(gs,problem)

[x,fval,exitflag,output,solutions] = run(gs,problem)

Description

x = run(gs,problem) finds a point x that solves the optimization problem described
in the problem structure.

[x,fval] = run(gs,problem) returns the value of the objective function in problem
at the point x.

[x,fval,exitflag] = run(gs,problem) returns an exit flag describing the results
of the multiple local searches.

[x,fval,exitflag,output] = run(gs,problem) returns an output structure
describing the iterations of the run.

[x,fval,exitflag,output,solutions] = run(gs,problem) returns a vector of
solutions containing the distinct local minima found during the run.

Input Arguments

gs

A GlobalSearch object.
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problem

Problem structure. Create problem with createOptimProblem or by exporting a
problem structure from the Optimization app. problem must contain at least the
following fields:

• solver

• objective

• x0

• options — Both createOptimProblem and the Optimization app always include an
options field in the problem structure.

Output Arguments

x

Minimizing point of the objective function.

fval

Objective function value at the minimizer x.

exitflag

Describes the results of the multiple local searches. Values are:

2 At least one local minimum found. Some runs of the local solver
converged.

1 At least one local minimum found. All runs of the local solver
converged.

0 No local minimum found. Local solver called at least once, and
at least one local solver exceeded the MaxIter or MaxFunEvals
tolerances.

-1 One or more local solver runs stopped by the local solver output or
plot function.

-2 No feasible local minimum found.
-5 MaxTime limit exceeded.
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-8 No solution found. All runs had local solver exit flag -2 or smaller,
not all equal -2.

-10 Failures encountered in user-provided functions.

output

A structure describing the iterations of the run. Fields in the structure:

funcCount Number of function evaluations.
localSolverIncomplete Number of local solver runs with 0 exit flag.
localSolverNoSolution Number of local solver runs with negative exit flag.
localSolverSuccess Number of local solver runs with positive exit flag.
localSolverTotal Total number of local solver runs.
message Exit message.

solutions

A vector of GlobalOptimSolution objects containing the distinct local solutions found
during the run. The vector is sorted by objective function value; the first element is best
(smallest value). The object contains:

X Solution point returned by the local solver.
Fval Objective function value at the solution.
Exitflag Integer describing the result of the local solver run.
Output Output structure returned by the local solver.
X0 Cell array of start points that led to the solution.

Examples

Use a default GlobalSearch object to solve the six-hump camel back problem (see “Run
the Solver” on page 3-20):

gs = GlobalSearch;

sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...

    + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);

problem = createOptimProblem('fmincon','x0',[-1,2],...
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    'objective',sixmin,'lb',[-3,-3],'ub',[3,3]);

[xmin,fmin,flag,outpt,allmins] = run(gs,problem);

Algorithms

A detailed description of the algorithm appears in “GlobalSearch Algorithm” on page
3-46. Ugray et al. [1] describes both the algorithm and the scatter-search method of
generating trial points.

References

[1] Ugray, Zsolt, Leon Lasdon, John Plummer, Fred Glover, James Kelly, and Rafael
Martí. Scatter Search and Local NLP Solvers: A Multistart Framework for Global
Optimization. INFORMS Journal on Computing, Vol. 19, No. 3, 2007, pp. 328–
340.

See Also
GlobalOptimSolution | GlobalSearch | createOptimProblem
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run

Class: MultiStart

Run local solver from multiple points

Syntax

x = run(ms,problem,k)

x = run(ms,problem,startpts)

[x,fval] = run(...)

[x,fval,exitflag] = run(...)

[x,fval,exitflag,output] = run(...)

[x,fval,exitflag,output,solutions] = run(...)

Description

x = run(ms,problem,k) runs the ms MultiStart object on the optimization problem
specified in problem for a total of k runs. x is the point where the lowest function value
was found. For the lsqcurvefit and lsqnonlin solvers, MultiStart minimizes the
sum of squares at x, also known as the residual.

x = run(ms,problem,startpts) runs the ms MultiStart object on the optimization
problem specified in problem using the start points described in startpts.

[x,fval] = run(...) returns the lowest objective function value fval at x. For the
lsqcurvefit and lsqnonlin solvers, fval contains the residual.

[x,fval,exitflag] = run(...) returns an exit flag describing the return condition.

[x,fval,exitflag,output] = run(...) returns an output structure containing
statistics of the run.

[x,fval,exitflag,output,solutions] = run(...) returns a vector of solutions
containing the distinct local minima found during the run.
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Input Arguments

ms

MultiStart object.

problem

Problem structure. Create problem with createOptimProblem or by exporting a
problem structure from the Optimization app. problem must contain the following fields:

• solver

• objective

• x0

• options — Both createOptimProblem and the Optimization app always include an
options field in the problem structure.

k

Number of start points to run. MultiStart generates k - 1 start points using the same
algorithm as list for a RandomStartPointSet object. MultiStart also uses the x0
point from the problem structure.

startpts

A CustomStartPointSet or RandomStartPointSet object. startpts can also be a cell
array of these objects.

Output Arguments

x

Point at which the objective function attained the lowest value during the run. For
lsqcurvefit and lsqnonlin, the objective function is the sum of squares, also known
as the residual.

fval

Smallest objective function value attained during the run. For lsqcurvefit and
lsqnonlin, the objective function is the sum of squares, also known as the residual.
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exitflag

Integer describing the return condition:

2 At least one local minimum found. Some runs of the local solver
converged.

1 At least one local minimum found. All runs of the local solver
converged.

0 No local minimum found. Local solver called at least once, and
at least one local solver exceeded the MaxIter or MaxFunEvals
tolerances.

-1 One or more local solver runs stopped by the local solver output or
plot function.

-2 No feasible local minimum found.
-5 MaxTime limit exceeded.
-8 No solution found. All runs had local solver exit flag -2 or smaller,

not all equal -2.
-10 Failures encountered in user-provided functions.

output

Structure containing statistics of the optimization. Fields in the structure:

funcCount Number of function evaluations.
localSolverIncomplete Number of local solver runs with 0 exit flag.
localSolverNoSolution Number of local solver runs with negative exit flag.
localSolverSuccess Number of local solver runs with positive exit flag.
localSolverTotal Total number of local solver runs.
message Exit message.

solutions

A vector of GlobalOptimSolution objects containing the distinct local solutions found
during the run. The vector is sorted by objective function value; the first element is best
(smallest value). The object contains:

X Solution point returned by the local solver.
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Fval Objective function value at the solution.
Exitflag Integer describing the result of the local solver run.
Output Output structure returned by the local solver.
X0 Cell array of start points that led to the solution.

Examples

Use a default MultiStart object to solve the six-hump camel back problem (see “Run
the Solver” on page 3-20):

ms = MultiStart;

sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...

    + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);

problem = createOptimProblem('fmincon','x0',[-1,2],...

    'objective',sixmin,'lb',[-3,-3],'ub',[3,3]);

[xmin,fmin,flag,outpt,allmins] = run(ms,problem,30);

Algorithms

A detailed description of the algorithm appears in “MultiStart Algorithm” on page 3-50.

See Also
CustomStartPointSet | GlobalOptimSolution | MultiStart | createOptimProblem |
RandomStartPointSet
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RandomStartPointSet class

Random start points

Description

Describes how to generate a set of pseudorandom points for use with MultiStart. A
RandomStartPointSet object does not contain points. It contains parameters used in
generating the points when MultiStart runs, or by the list method.

Construction

RS = RandomStartPointSet constructs a default RandomStartPointSet object.

RS = RandomStartPointSet('PropertyName',PropertyValue,...) constructs
the object using options, specified as property name and value pairs.

RS = RandomStartPointSet(OLDRS,'PropertyName',PropertyValue,...)

creates a copy of the OLDRS RandomStartPointSet object, with the named properties
altered with the specified values.

Properties

ArtificialBound

Absolute value of default bounds to use for unbounded problems (positive scalar).

If a component has no bounds, list uses a lower bound of -ArtificialBound, and an
upper bound of ArtificialBound.

If a component has a lower bound lb, but no upper bound, list uses an upper bound of
lb + 2*ArtificialBound. Similarly, if a component has an upper bound ub, but no
lower bound, list uses a lower bound of ub - 2*ArtificialBound.

Default: 1000
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NumStartPoints

Number of start points to generate (positive integer)

Default: 10

Methods

list Generate start points

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

Examples

Create a RandomStartPointSet object for 40 points, and use list to generate a point
matrix for a seven-dimensional problem:

rs = RandomStartPointSet('NumStartPoints',40); % 40 points

problem = createOptimProblem('fminunc','x0',ones(7,1),...

    'objective',@rosenbrock);

ptmatrix = list(rs,problem); % 'list' generates the matrix

See Also
MultiStart | list | CustomStartPointSet

How To
• Class Attributes
• Property Attributes
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saoptimget
Values of simulated annealing options structure

Syntax

val = saoptimget(options, 'name')

val = saoptimget(options, 'name', default)

Description

val = saoptimget(options, 'name') returns the value of the parameter name from
the simulated annealing options structure options. saoptimget(options, 'name')
returns an empty matrix [] if the value of name is not specified in options. It is only
necessary to type enough leading characters of name to uniquely identify the parameter.
saoptimget ignores case in parameter names.

val = saoptimget(options, 'name', default) returns the 'name' parameter,
but returns the default value if the 'name' parameter is not specified (or is []) in
options.

Examples
opts = saoptimset('TolFun',1e-4);

val = saoptimget(opts,'TolFun');

returns val = 1e-4 for TolFun.

More About
• “Simulated Annealing Options” on page 10-62

See Also
saoptimset | simulannealbnd
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saoptimset
Create simulated annealing options structure

Syntax
saoptimset

options = saoptimset

options = saoptimset('param1',value1,'param2',value2,...)

options = saoptimset(oldopts,'param1',value1,...)

options = saoptimset(oldopts,newopts)

options = saoptimset('simulannealbnd')

Description
saoptimset with no input or output arguments displays a complete list of parameters
with their valid values.

options = saoptimset (with no input arguments) creates a structure called options
that contains the options, or parameters, for the simulated annealing algorithm, with all
parameters set to [].

options = saoptimset('param1',value1,'param2',value2,...) creates a
structure options and sets the value of 'param1' to value1, 'param2' to value2,
and so on. Any unspecified parameters are set to []. It is sufficient to type only enough
leading characters to define the parameter name uniquely. Case is ignored for parameter
names. Note that for string values, correct case and the complete string are required.

options = saoptimset(oldopts,'param1',value1,...) creates a copy of
oldopts, modifying the specified parameters with the specified values.

options = saoptimset(oldopts,newopts) combines an existing options structure,
oldopts, with a new options structure, newopts. Any parameters in newopts with
nonempty values overwrite the corresponding old parameters in oldopts.

options = saoptimset('simulannealbnd') creates an options structure with all
the parameter names and default values relevant to 'simulannealbnd'. For example,

saoptimset('simulannealbnd')
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ans = 

          AnnealingFcn: @annealingfast

        TemperatureFcn: @temperatureexp

         AcceptanceFcn: @acceptancesa

                TolFun: 1.0000e-006

        StallIterLimit: '500*numberofvariables'

           MaxFunEvals: '3000*numberofvariables'

             TimeLimit: Inf

               MaxIter: Inf

        ObjectiveLimit: -Inf

               Display: 'final'

       DisplayInterval: 10

             HybridFcn: []

        HybridInterval: 'end'

              PlotFcns: []

          PlotInterval: 1

            OutputFcns: []

    InitialTemperature: 100

      ReannealInterval: 100

              DataType: 'double'

Options

The following table lists the options you can set with saoptimset. See “Simulated
Annealing Options” on page 10-62 for a complete description of these options and their
values. Values in {} denote the default value. You can also view the options parameters
by typing saoptimset at the command line.

Option Description Values

AcceptanceFcn Handle to the function the
algorithm uses to determine if a
new point is accepted

Function handle |{@acceptancesa}

AnnealingFcn Handle to the function the
algorithm uses to generate new
points

Function handle | @annealingboltz
| {@annealingfast}

DataType Type of decision variable 'custom' | {'double'}
Display Level of display 'off' | 'iter' | 'diagnose' |

{'final'}

DisplayInterval Interval for iterative display Positive integer | {10}
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Option Description Values

HybridFcn Automatically run HybridFcn
(another optimization function)
during or at the end of iterations
of the solver

@fminsearch | @patternsearch |

@fminunc | @fmincon | {[]}

or

1-by-2 cell array | {@solver,
hybridoptions}, where solver
= fminsearch, patternsearch,
fminunc, or fmincon {[]}

HybridInterval Interval (if not 'end' or
'never') at which HybridFcn
is called

Positive integer | 'never' | {'end'}

InitialTemperature Initial value of temperature Positive scalar | positive vector |
{100}

MaxFunEvals Maximum number of objective
function evaluations allowed

Positive integer |
{3000*numberOfVariables}

MaxIter Maximum number of iterations
allowed

Positive integer | {Inf}

ObjectiveLimit Minimum objective function
value desired

Scalar | {-Inf}

OutputFcns Function(s) get(s) iterative data
and can change options at run
time

Function handle or cell array of
function handles | {[]}

PlotFcns Plot function(s) called during
iterations

Function handle or cell array of
function handles | @saplotbestf
| @saplotbestx | @saplotf
|  @saplotstopping |
@saplottemperature | {[]}

PlotInterval Plot functions are called at every
interval

Positive integer | {1}

ReannealInterval Reannealing interval Positive integer | {100}
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Option Description Values

StallIterLimit Number of iterations over
which average change in fitness
function value at current point is
less than options.TolFun

Positive integer |
{500*numberOfVariables}

TemperatureFcn Function used to update
temperature schedule

Function handle |
@temperatureboltz |
@temperaturefast |
{@temperatureexp}

TimeLimit The algorithm stops after
running for TimeLimit seconds

Positive scalar | {Inf}

TolFun Termination tolerance on
function value

Positive scalar | {1e-6}

More About
• “Simulated Annealing Options” on page 10-62

See Also
saoptimget | simulannealbnd
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simulannealbnd
Find minimum of function using simulated annealing algorithm

Syntax
x = simulannealbnd(fun,x0)

x = simulannealbnd(fun,x0,lb,ub)

x = simulannealbnd(fun,x0,lb,ub,options)

x = simulannealbnd(problem)

[x,fval] = simulannealbnd( ___ )

[x,fval,exitflag,output] = simulannealbnd( ___ )

Description
x = simulannealbnd(fun,x0) finds a local minimum, x, to the function handle fun
that computes the values of the objective function. x0 is an initial point for the simulated
annealing algorithm, a real vector.

Note: “Passing Extra Parameters” explains how to pass extra parameters to the objective
function and nonlinear constraint functions, if necessary.

x = simulannealbnd(fun,x0,lb,ub) defines a set of lower and upper bounds on the
design variables in x, so that the solution is always in the range lb ≤ x ≤ ub. If x(i)
is unbounded below, set lb(i) = -Inf, and if x(i) is unbounded above, set ub(i) =
Inf.

x = simulannealbnd(fun,x0,lb,ub,options) minimizes with the optimization
options specified in options. Use saoptimset to set these options. If no bounds exist,
set lb = [] and/or ub = [].

x = simulannealbnd(problem) finds the minimum for problem, where problem
is a structure described in . Create the problem structure by exporting a problem from
Optimization app, as described in “Exporting Your Work”.

[x,fval] = simulannealbnd( ___ ), for any syntax, returns the value of the
objective function fun at the solution x.
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[x,fval,exitflag,output] = simulannealbnd( ___ ) additionally returns a value
exitflag that describes the exit condition of simulannealbnd, and a structure output
with information about the optimization process.

Examples

Minimize a Function with Many Local Minima

Minimize De Jong's fifth function, a two-dimensional function with many local minima.

Plot De Jong's fifth function.

dejong5fcn
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Minimize De Jong's fifth function using simulannealbnd starting from the point [0,0].

fun = @dejong5fcn;

x0 = [0 0];

x = simulannealbnd(fun,x0)

Optimization terminated: change in best function value less than options.TolFun.

x =

  -32.0285   -0.1280

The simulannealbnd algorithm uses the MATLAB® random number stream, so you
might obtain a different result.

Minimize Subject to Bounds

Minimize De Jong’s fifth function within a bounded region.

Plot De Jong's fifth function.

dejong5fcn
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Start simulannealbnd starting at the point [0,0], and set lower bounds of -64 and
upper bounds of 64 on each component.

fun = @dejong5fcn;

x0 = [0 0];

lb = [-64 -64];

ub = [64 64];

x = simulannealbnd(fun,x0,lb,ub)

Optimization terminated: change in best function value less than options.TolFun.

x =

  -15.9790  -31.9593
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The simulannealbnd algorithm uses the MATLAB® random number stream, so you
might obtain a different result.

Minimize Using Nondefault Options

Observe the progress of simulannealbnd by setting options to use some plot functions.

Set simulated annealing options to use several plot functions.

options = saoptimset('PlotFcns',{@saplotbestx,...

          @saplotbestf,@saplotx,@saplotf});

Start simulannealbnd starting at the point [0,0], and set lower bounds of -64 and
upper bounds of 64 on each component.

rng default % For reproducibility

fun = @dejong5fcn;

x0 = [0,0];

lb = [-64,-64];

ub = [64,64];

x = simulannealbnd(fun,x0,lb,ub,options)

Optimization terminated: change in best function value less than options.TolFun.

x =

  -15.9790  -31.9593
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Obtain All Outputs

Obtain all the outputs of a simulated annealing minimization.

Plot De Jong's fifth function.

dejong5fcn
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Start simulannealbnd starting at the point [0,0], and set lower bounds of -64 and
upper bounds of 64 on each component.

fun = @dejong5fcn;

x0 = [0,0];

lb = [-64,-64];

ub = [64,64];

[x,fval,exitflag,output] = simulannealbnd(fun,x0,lb,ub)

Optimization terminated: change in best function value less than options.TolFun.

x =

  -15.9790  -31.9593
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fval =

    1.9920

exitflag =

     1

output = 

     iterations: 1762

      funccount: 1779

        message: 'Optimization terminated: change in best function value l...'

       rngstate: [1x1 struct]

    problemtype: 'boundconstraints'

    temperature: [2x1 double]

      totaltime: 3.3384

The simulannealbnd algorithm uses the MATLAB® random number stream, so you
might obtain a different result.

• “Minimization Using Simulated Annealing Algorithm”
• “Simulated Annealing Options”
• “Custom Data Type Optimization Using Simulated Annealing”

Input Arguments

fun — Function to be minimized
function handle | function name

Function to be minimized, specified as a function handle or function name.fun is a
function that accepts a vector x and returns a real scalar f, the objective function
evaluated at x.

fun can be specified as a function handle for a file:

x = simulannealbnd(@myfun,x0)
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where myfun is a MATLAB function such as

function f = myfun(x)

f = ...            % Compute function value at x

fun can also be a function handle for an anonymous function:

x = simulannealbnd(@(x)norm(x)^2,x0,lb,ub);

Example: fun = @(x)sin(x(1))*cos(x(2))

Data Types: char | function_handle

x0 — Initial point
real vector

Initial point, specified as a real vector. simulannealbnd uses the number of elements in
x0 to determine the number of variables that fun accepts.

Example: x0 = [1,2,3,4]

Data Types: double

lb — Lower bounds
real vector | real array

Lower bounds, specified as a real vector or real array. If the number of elements in x0 is
equal to that of lb, then lb specifies that
x(i) >= lb(i) for all i.

If numel(lb) < numel(x0), then lb specifies that
x(i) >= lb(i) for 1 <= i <= numel(lb).

In this case, solvers issue a warning.
Example: To specify that all control variables are positive, lb = zeros(size(x0))

Data Types: double

ub — Upper bounds
real vector | real array

Upper bounds, specified as a real vector or real array. If the number of elements in x0 is
equal to that of ub, then ub specifies that
x(i) <= ub(i) for all i.
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If numel(ub) < numel(x0), then ub specifies that
x(i) <= ub(i) for 1 <= i <= numel(ub).

In this case, solvers issue a warning.
Example: To specify that all control variables are less than one, ub = ones(size(x0))

Data Types: double

options — Optimization options
structure such as saoptimset returns

Optimization options, specified as a structure such as saoptimset returns. For details,
see “Simulated Annealing Options” on page 10-62.

Option Description Values

AcceptanceFcn Handle to the function the
algorithm uses to determine if a
new point is accepted

Function handle |{@acceptancesa}

AnnealingFcn Handle to the function the
algorithm uses to generate new
points

Function handle | @annealingboltz
| {@annealingfast}

DataType Type of decision variable 'custom' | {'double'}
Display Level of display 'off' | 'iter' | 'diagnose' |

{'final'}

DisplayInterval Interval for iterative display Positive integer | {10}
HybridFcn Automatically run HybridFcn

(another optimization function)
during or at the end of iterations
of the solver

@fminsearch | @patternsearch |

@fminunc | @fmincon | {[]}

or

1-by-2 cell array | {@solver,
hybridoptions}, where solver
= fminsearch, patternsearch,
fminunc, or fmincon {[]}

HybridInterval Interval (if not 'end' or
'never') at which HybridFcn
is called

Positive integer | 'never' | {'end'}
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Option Description Values

InitialTemperature Initial value of temperature Positive scalar | positive vector |
{100}

MaxFunEvals Maximum number of objective
function evaluations allowed

Positive integer |
{3000*numberOfVariables}

MaxIter Maximum number of iterations
allowed

Positive integer | {Inf}

ObjectiveLimit Minimum objective function
value desired

Scalar | {-Inf}

OutputFcns Function(s) get(s) iterative data
and can change options at run
time

Function handle or cell array of
function handles | {[]}

PlotFcns Plot function(s) called during
iterations

Function handle or cell array of
function handles | @saplotbestf
| @saplotbestx | @saplotf
|  @saplotstopping |
@saplottemperature | {[]}

PlotInterval Plot functions are called at every
interval

Positive integer | {1}

ReannealInterval Reannealing interval Positive integer | {100}
StallIterLimit Number of iterations over

which average change in fitness
function value at current point is
less than options.TolFun

Positive integer |
{500*numberOfVariables}

TemperatureFcn Function used to update
temperature schedule

Function handle |
@temperatureboltz |
@temperaturefast |
{@temperatureexp}

TimeLimit The algorithm stops after
running for TimeLimit seconds

Positive scalar | {Inf}

TolFun Termination tolerance on
function value

Positive scalar | {1e-6}

Example: options = saoptimset('MaxIter',150)

Data Types: struct
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problem — Problem structure
structure

Problem structure, specified as a structure with the following fields:

• objective — Objective function
• x0 — Starting point
• lb — Lower bound for x
• ub — Upper bound for x
• solver — 'simulannealbnd'
• options — Options structure created with saoptimset
• rngstate — Optional field to reset the state of the random number generator

Create the structure problem by exporting a problem from the Optimization app,
as described in “Importing and Exporting Your Work” in the Optimization Toolbox
documentation.

Note problem must have all the fields as specified above.

Data Types: struct

Output Arguments

x — Solution
real vector

Solution, returned as a real vector. The size of x is the same as the size of x0. Typically, x
is a local solution to the problem when exitflag is positive.

fval — Objective function value at the solution
real number

Objective function value at the solution, returned as a real number. Generally,
fval = fun(x).

exitflag — Reason simulannealbnd stopped
integer
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Reason simulannealbnd stopped, returned as an integer.

Exit Flag Meaning

1 Average change in the value of the objective function over
options.StallIterLimit iterations is less than options.TolFun.

 

5 options.ObjectiveLimit limit reached.
0 Maximum number of function evaluations or iterations reached.
-1 Optimization terminated by an output function or plot function.
-2 No feasible point found.
-5 Time limit exceeded.

output — Information about the optimization process
structure

Information about the optimization process, returned as a structure with fields:

• problemtype — Type of problem: unconstrained or bound constrained.
• iterations — The number of iterations computed.
• funccount — The number of evaluations of the objective function.
• message — The reason the algorithm terminated.
• temperature — Temperature when the solver terminated.
• totaltime — Total time for the solver to run.
• rngstate — State of the MATLAB random number generator, just before the

algorithm started. You can use the values in rngstate to reproduce the output of
simulannealbnd. See “Reproduce Your Results” on page 7-18.

More About
• “Optimization Workflow” on page 1-16
• “What Is Simulated Annealing?” on page 7-2
• “Optimize Using Simulated Annealing” on page 7-3
• “Simulated Annealing Terminology” on page 7-10
• “How Simulated Annealing Works” on page 7-12
• “Command Line Simulated Annealing Optimization” on page 7-15
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See Also
ga | patternsearch | saoptimset

Introduced in R2007a




